首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A pool of hydrolases with 21.4 U g−1 lipase activity was produced through solid-state fermentation of the fungus Penicillium restrictum in waste from the Orbignya oleifera (babassu) oil processing industry. Enzymatic hydrolysis and anaerobic biodegradability tests were conducted on poultry slaughterhouse effluents with varying oil and grease contents (150–1200 mg l−1) and solid enzymatic pool concentrations (0.1–1.0% w/v). Enhanced anaerobic treatment efficiency relative to raw effluent was achieved when a 0.1% concentration of enzymatic pool was used in the pre-hydrolysis stage with 1200 mg oil and grease l−1 (chemical oxygen demand (COD) removal efficiency of 85% vs. 53% and biogas production of 175 ml vs. 37 ml after 4 d).  相似文献   

2.
This study evaluated the biological treatability of produced water (PW), the water separated from oil at the wellhead which contains both dispersed oil and low levels of heavy metals, using waste stabilisation ponds (WSPs). We examined both chemical oxygen demand (COD) and oil and grease (O&G) removal using different process configurations (hydraulic retention time (HRT), aerobic and anaerobic conditions, oil skimming, effluent recycle) in a small (10 L) reactor being fed a synthetic PW (COD = 1050–1350 mg L−1, O&G = 400–500 μL L−1, 6 gNaCl/L). The reactor was operated for 6 months, and at a HRT of 6 days (8 with evaporation) COD removals were greater than 85%, and improved over time to >90%, while O&G removals (measured with a newly developed method) were greater than 82% and also improved with time. Operating with an anaerobic section, oil skimming and 300% recycling were all found to enhance COD removal.  相似文献   

3.
In general, treatment wetlands seem to be a potential method of tackling the sulphide problem of post-treatment of anaerobic digester effluents.Because of insufficient practical experience and lack of knowledge of sulphide removal, sulphur transformation was investigated, particularly in horizontal subsurface flow constructed wetlands (depth of 35 cm) under laboratory-scale conditions with artificial wastewater.The plants affected a clear stimulation of the sulphide and ammonia removal rates. Sulphide concentration in the range of 1.5–2.0 mg l−1 was tolerated by the plants and completely removed in the planted model wetlands; sulphide concentration of >2.0 mg l−1 caused instabilities in sulphide and nitrogen removal. Area-specific sulphide removal rates of up to 94 mg sulphide m−2 d−1 were achieved in the planted beds at hydraulic retention times of 2.5 d. Sulphate affected the sulphide removal. While in the unplanted control bed an almost stable removal in the range of 150–300 mg N m−2 d−1 was observed variations of hydraulic retention time, sulphide and sulphate concentrations influenced the ammonia removal rate within the planted beds in a broader range (600–1400 mg N m−2 d−1).These results showed that nitrification, sulphide oxidation, denitrification and sulphate reduction can occur simultaneously in the rhizosphere of treatment wetlands caused by dynamic redox gradients (aerobic–anaerobic) conditions.  相似文献   

4.
Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360   总被引:1,自引:0,他引:1  
Galactomyces geotrichum MTCC 1360 can decolorize triphenylmethane, azo and reactive high exhaust textile dyes. At shaking condition this strain showed 100% decolorization of a toxic azo dye Methyl red (100 m gl−1) within 1 h in deionized water at 30 °C. The degradation of Methyl red was possible through a broad pH (3–12) and temperature (5–50 °C) range. Glucose and mycelium concentration had increased the decolorization rate, but the addition of 1 gl−1 molasses in deionized water made decolorization possible in only 10 min. Induction in the NADH–dichloro phenol indophenol (NADH–DCIP) reductase, Malachite green reductase, laccase and lignin peroxidase (Lip) activities were observed in the cells obtained after complete decolorization, showing that there is direct involvement in the degradation of Methyl red. The absence of N-N′-dimethyl-p-phenylenediamine (DMPD) in 5 °C, 2-aminobenzoic acid (ABA) in 50 °C and both the compounds in 30 °C sample have shown the differences in the metabolic fate of Methyl red at different temperatures. The untreated dye at 300 mg l−1 concentration showed 88% germination inhibition in Sorghum bicolor, whereas it was 72% in Triticum aestivum. There was no germination inhibition for both the plants by Methyl red metabolites at 300 mg l−1 concentration.

The scientific relevance of the paper

The azo dye Methyl red (100 mg l−1) was decolorized by G. geotrichum MTCC 1360 within 1 h at shaking condition in deionized water. This organism could decolorize Methyl red at wide pH and temperature ranges. Decolorization time was reduced to 10 min by the addition of molasses to deionized water. There was induction in laccase and Lip, NADH–DCIP reductase and Malachite green reductase activities. The metabolic fate of Methyl red changes with temperature which can be evidenced by the formation of 2-ABA at 5 °C, N-N′-DMPD at 50 °C and both the compounds were absent at 30 °C. Phytotoxicity showed that metabolites of dye had induced shoot and root length of both the tested plants.  相似文献   

5.
A sequencing batch reactor (SBR) system is demonstrated to biologically remove nitrogen, phosphorus and chemical oxygen demand (COD) to very low levels from abattoir wastewater. Each 6 h cycle contained three anoxic/anaerobic and aerobic sub-cycles with wastewater fed at the beginning of each anoxic/anaerobic period. The step-feed strategy was applied to avoid high-level build-up of nitrate or nitrite during nitrification, and therefore to facilitate the creation of anaerobic conditions required for biological phosphorus removal. A high degree removal of total phosphorus (>98%), total nitrogen (>97%) and total COD (>95%) was consistently and reliably achieved after a 3-month start-up period. The concentrations of total phosphate and inorganic nitrogen in the effluent were consistently lower than 0.2 mg P l−1 and 8 mg N l−1, respectively. Fluorescence in situ hybridization revealed that the sludge was enriched in Accumulibacter spp. (20–40%), a known polyphosphate accumulating organism, whereas the known glycogen accumulating organisms were almost absent. The SBR received two streams of abattoir wastewater, namely the effluent from a full-scale anaerobic pond (75%) and the effluent from a lab-scale high-rate pre-fermentor (25%), both receiving raw abattoir wastewater as feed. The pond effluent contained approximately 250 mg N l−1 total nitrogen and 40 mg P l−1 of total phosphorus, but relatively low levels of soluble COD (around 500 mg l−1). The high-rate lab-scale pre-fermentor, operated at 37°C and with a sludge retention time of 1 day, proved to be a cheap and effective method for providing supplementary volatile fatty acids allowing for high-degree of biological nutrient removal from abattoir wastewater.  相似文献   

6.
Red HE7B (RHE7B, 100 mg l−1), a sulfonated azo dye, was decolorized at static condition by Pseudomonas desmolyticum NCIM 2112 in 72 h with 71% reduction in chemical oxygen demand (COD). Extracellular lignin peroxidase (LiP) has played a crucial role in breakdown of the dye by asymmetric cleavage and reductases in the initial 24 h incubation to break azo bonds of some dye molecules. Dye also induced the activity of aminopyrine N-demethylase, one of the enzymes of mixed function oxidase system. Decolorization and degradation were analyzed by using UV–vis and high-pressure liquid chromatography (HPLC). The Fourier transform infrared spectroscopy (FTIR) analysis revealed that P. desmolyticum preferred C–N and SO bonds to break down the RHE7B. GC–MS identification of 8-amino-naphthalene-1,3,6,7-tetraol and 2-hydroxyl-6-oxalyl-benzoic acid as final metabolites supports the degradation of RHE7B by desulfonation before and after ring cleavage. Aerobic degradation of amines and reduced phytotoxicity increased the applicability of this microorganism for dye removal.

Scientific relevance of the paper

This is the first report on degradation of Red HE7B by oxidative enzymes and on further degradation by desulfonation before and after ring cleavage.  相似文献   

7.
Three pretreatment methods were compared based on their ability to increase the extent and rate of anaerobic bioconversion of pulp mill secondary sludge to biogas. The pretreatment technologies used in these experiments were: (i) thermal pretreatment performed at 170 °C; (ii) thermochemical (caustic) pretreatment performed at pH 12 and 140 °C; and (iii) sonication performed at 20 kHz and 1 W mL−1. Sludge samples were obtained from a sulfite and a kraft pulp mill, and biochemical methane potential (BMP) assays were performed using microbial granules obtained from a high-rate anaerobic digester operating at a pulp mill. Biogas production from untreated sludge was 0.05 mL mg−1 of measured chemical oxygen demand (COD) and 0.20 mL mg−1 COD for kraft and sulfite sludge, respectively. Thermal pretreatment had the highest impact on sludge biodegradability. In this case, biogas yield and production rate from sulfite sludge increased by 50% and 10 times, respectively, while biogas yield and production rate from kraft sludge increased by 280% and 300 times, respectively. Biogas yield correlated to soluble carbohydrate content better than soluble COD.  相似文献   

8.
Microbial reduction of soluble uranyl [U (VI)] to insoluble uraninite by sulfate reducing bacteria (SRB) is a promising remediation strategy for uranium-contaminated groundwater. Effects of environmental factors, including pH and coexisting ions, on U (VI) bioreduction processes (UBP) remain unknown. Anaerobic batch experiments were performed to evaluate impact on UBP. Kinetic investigations with varied pH demonstrated that U (VI) was reduced mostly within 48 h. The bioprecipitation yields depended strongly on pH, increasing from 12.9% to 99.4% at pH 2.0 and 6.0, respectively. Sulfate concentration 4000 mg l−1 did not affect UBP; however, sulfate concentration 5000 mg l−1 significantly slowed UBP. Biogenic H2S produced during sulfate reduction was not directly involved in UBP. At 20 mg l−1 Zn or 10 mg l−1 Cu, no UBP inhibition was observed and uraninite was detected in metal sulfide precipitate. However, 25 mg l−1 Zn or 15 mg l−1 Cu stopped UBP completely. Cu toxicity mechanism probably differed from Zn. The ability to reduce U (VI) was lost permanently with exposure to 15 mg l−1 Cu, but not for Zn 25 mg l−1. No uraninite could be detected before nitrate removal, suggesting nitrate strongly inhibited UBP, which may possibly be related to denitrification intermediates controlling the solution redox potential.  相似文献   

9.
The primary objective of this study was to evaluate the performance of a 20 l lab scale anaerobic hybrid reactor (AHR) combining sludge blanket in the lower part and filter in the upper part under varying organic loading rates (OLRs) in order to study biodegradation of olive mill effluent (OME). For this purpose, some parameters, such as total phenols, effluent chemical oxygen demand (COD), suspended solids (SS), volatile fatty acids (VFAs), and pH in the influent and effluent, and removal efficiencies for those parameters (except pH) were continuously monitored throughout the experimental period of 477 days. Eleven different organic loadings between 0.45 and 32 kg COD m−3 day−1 were imposed by either varying influent COD or hydraulic retention time (HRT). The results demonstrated that the AHR reactor could tolerate high influent COD concentrations. Removal efficiencies for the studied pollution parameters were found to be as follows: COD, 50–94%; total phenol, 39–80%; color, 0–54%; and suspended solids, 19–87%. The levels of VFAs in the effluent, which was principally acetate, butyrate, iso-butyrate, and propionate, varied between 10 and 2005 mg l−1 depending upon OLRs. A COD removal efficiency of 90% could be achieved as long as OLR is kept at a level of less than 10 kg COD m−3 day−1. However, a secondary treatment unit for polishing purposes is necessary to comply with receiving media discharge standards.  相似文献   

10.
The effects of elicitors on cell growth and oleanolic acid (OA) accumulation in shaken cell suspension cultures of Calendula officinalis were investigated. Elicitors were added individually at various concentrations to 5-day-old cell cultures and their effects monitored at 24 h intervals for 4 days. Different effects on OA accumulation were observed depending on the day of treatment. Jasmonic acid was the most efficient elicitor. After 72 h of treatment with 100 μM JA, the intracellular content of OA reached its maximum value (0.84 mg g−1 DW), which was 9.4-fold greater than that recorded in an untreated control cultures. The addition of chitosan at 50 mg l−1 produced a 5-fold enhancement of OA accumulation (0.37 mg g−1 DW) after 48 h of treatment. Treatment with yeast extract at 200 mg l−1 for 96 h or with pectin at 2 mg l−1 for 48 h produced identical cellular levels of OA (0.22 mg g−1 DW). Lastly, 48 h elicitation with homogenate of the fungus Trichoderma viride produced a 1.8-fold increase in oleanolic acid content (0.12 mg g−1 DW). In addition to significantly stimulating OA accumulation and its secretion into the culture medium, the elicitors also caused slight inhibition of cell growth.  相似文献   

11.
The removal efficiencies of 15 PAHs and some COD components (inert, readily degradable, slowly degradable and metabolic products) from a wastewater taken from a petrochemical industry treatment plant (İzmir, Turkey) have been determined using an aerobic completely stirred tank reactor (CSTR). Addition of rhamnolipid surfactant (15 mg l−1) increased the removal efficiencies of PAHs and soluble COD from 72% and 90% to 80% and 99%, respectively. The rhamnolipid treatment caused a significant increase of 5- and 6-ring PAH degradation. The soluble COD removal efficiency was 93%, in CSTR reactors with rhamnolipid added. The inert COD removal efficiency was 60% in a CSTR reactor containing rhamnolipid. Batch tests showed that removal arising from the adsorption of the PAHs was low (between 1.88% and 4.84%) while the removal of PAHs from the petrochemical industry wastewater via volatilization varied between 0.69% and 5.92%. Low sorption capacity (Kp) values for refinery activated sludge (approximately 2.98 l g−1) confirmed that bio-sorption was not an important mechanism controlling the fate of PAHs in aerobic CSTR reactors. Models proposed to simulate the PAH removal indicated that 94% of the PAHs were removed via biodegradation.  相似文献   

12.
Biotreatment of bagasse effluent using Phanerochaete chrysosporium (white rot fungus) is investigated. This study confirmed that lignin is the major pollutant component in this effluent followed by different carbohydrates. The treatment conditions must be very proper, especially in terms of biomass culture to achieve a successful treatment. The best conditions of temperature, biomass concentration, pH and duration for biotreatment of this effluent were 35°C, 552 mg l−1, 6 and 5 to 9 days, respectively. Under these conditions, a 9 days long treatment reduced by 98.7% the original biochemical oxygen demand (of 2,780 mg l−1) and by 98.5% the dissolved chemical oxygen demand (initial 4,200 mg l−1). Moreover, fungal treatment reduced total dissolved solids from 3,950 to 575 mg l−1 and color from 560 mg l−1 PtCo to 111 mg l−1 PtCo.  相似文献   

13.
The fungal strain A. niger SA1 isolated from textile wastewater pond proved to be an important source of remediation (decolorization/degradation) for textile dye, AR 151 (Reactive diazo dye) under different physicochemical conditions. Decolorization assays of AR 151 were carried out in Simulated textile effluent under shake flask condition for 8 days. Decolorization (at 20 mg l−1 of dye) and related biomass production overall decreased with increase in pH from 5 to 9, at 30°C. It was maximum (95.71%) at pH 5 with highest amount of three residual products (36.91 (α-naphthol = 5.72) (sulfanilic acid = 24.81) (aniline = 6.38)) besides 2.05 mg ml−1 of biomass production at an optimum concentration 6 and 0.1 mg l−1 of glucose and urea respectively. The formation of the three products followed a quite different pattern at different pH values, however, it was considerably low (Total = 2.81 mg l−1) compared to the amount of decolorization (67.26%) at pH 8. Decolorization (95–97%) was most favored under mesophilic temperature (25–45°C). It increased i.e., 90–98% with subsequent increase in dye from 10 to 100 mg l−1, kept ≥50% below 400 mg l−1 and drastically declined to 17% at 500 mg l−1 of dye. Apparently, decolorization is found to be associated with fungal growth and hyphal uptake mechanism (Biosorption/Bioadsorption), however, mineralization of AR 151 and related products under different operational conditions also suggested a metabolically mediated decolorization/degradation.  相似文献   

14.
An azo dye, acid orange 7 (AO7), was selected to study the role of Phragmites australis (P. australis) peroxidases (POD) activity in its degradation in a vertical flow constructed wetland (VFCW). Crude plant extract was found to degrade AO7 and its aromatic amines, after 120 h in contact with H2O2, and removals of were obtained for 40 mgAO7 l−1 ().The VFCW was found to be suitable to treat an effluent containing an azo dye. For influent concentrations of 130 mgAO7 l−1 POD activity increased 2.1-, 4.3- and 12.9-fold for leaves, stems and roots, respectively. At 700 mgAO7 l−1, inhibition of POD activity occurred immediately, but it returned to the previous levels after only 2 days. An AO7 organic load of 21 up to 105 g COD m2 day−1, revealed non-toxicity, being expectable to achieve removals of 11 up to 67 g COD m2 day−1. Both [AO7] and TOC removal efficiencies were found to be similar (approximately 70%), which is indicative of AO7 mineralization. A 3 h cycle was found to be sufficient to degrade AO7 and a system buffering capacity from 5 to 25 min cycle−1 was demonstrated by flooding level control.  相似文献   

15.
Olive mill wastewater (OMW) is a highly polluting wastewater, caused by a high organic load and phenol content. These characteristics suggest that it may be suitable for aerobic treatment and anaerobic bacterial digestion. Aerobic treatment coupled with anaerobic bacterial digestion may be economically feasible as the methane produced is a valuable energy source while simultaneously purifying the OMW. In an attempt to improve the overall performance of the process, the addition of a co-substrate such as whey to the aerobic treatment pre-treatment of OMW by the yeast Candida tropicalis was studied.The two-stage system operated satisfactorily up to an organic loading rate (OLR) of 3.0 kg COD L−1 day−1 with a biogas production rate of 1.25 Lbiogas Lreactor−1 day−1 and a total COD reduction in excess of 93% (62% COD reduction in aerobic pretreatment and 83% COD reduction in anaerobic digestion). Fifty-four percent of the phenol was biodegraded during the aerobic treatment stage, and biogas with between 68% and 75% methane was produced during anaerobic digestion.  相似文献   

16.
Hydrocarbon-degrading bacteria isolated from oil-polluted soils, were used to design three defined mixed cultures (DMC) for biodegradation of Maya crude oil fractions. The first degrading culture, DMC A was made up with 10 strains. Design of DMC B (six strains) and DMC C (three strains) was based on DGGE profiles obtained throughout biodegradation assays of different petroleum fractions. Biodegradation of the aliphatic fraction (10 000 mg l−1) and an aromatic–polar mixture (5000 mg l−1) was evaluated for the DMC B. Biodegradation of total hydrocarbons (10 000 mg l−1) and its fractions was evaluated for DMC B and DMC C. During biodegradation assays, O2 consumption and CO2 production were assessed by respirometry, while population dynamics of predominant strains was based on PCR-DGGE profiles of partial 16S rDNA. Aliphatic fraction was completely biodegraded by DMC B, while degradation of the aromatic–polar mixture was 12.5% and for total hydrocarbons 40.5%. DMC B was able to degrade the aromatic fraction (31%) and even the polar fraction (19.6%) present in total hydrocarbons. DMC C degraded the aromatic and polar fractions (5.6% and 2%, respectively) present in total hydrocarbons. DGGE profiles of the DMCs indicated that Pseudomonas sp., Gordonia rubripertincta and a non-identified strain were predominant and probably responsible of the hydrocarbons biodegradation. The use of DGGE-fingerprinting to track microbial populations, allowed selecting strains to design efficient oil-degrading defined mixed cultures.  相似文献   

17.
Ten sulfonated aromatic amines were tested for their aerobic and anaerobic biodegradability and toxicity potential in a variety of environmental inocula. Of all the compounds tested, only two aminobenzenesulfonic acid (ABS) isomers, 2- and 4-ABS, were degraded. The observed degradation occurred only under aerobic conditions with inocula sources that were historically polluted with sulfonated aromatic amines. Bioreactor experiments, with non-sterile synthetic wastewater, confirmed the results from the aerobic batch degradation experiments. Both ABS isomers were degraded in long-term continuous experiment by abioaugmented enrichment culture. The maximum degradation rate in the aerobic bioreactor was 1.6–1.8 gl–1 d–1 for 2-ABS and a somewhat lower value for 4-ABS at hydraulic retention times (HRT) of 2.8–3.3h. Evidence for extensive mineralization of 2- and 4-ABS was based on oxygen uptake and carbon dioxide production during the batch experiments and the high levels of chemical oxygen demand (COD) removal in the bioreactor. Furthermore, mineralization of the sulfonate group was demonstrated by high recovery of sulfate. The sulfonated aromatic amines did not show any toxic effects on the aerobic and anaerobic bacterial populations tested. The poor biodegradability of sulfonated aromatic amines indicated under the laboratory conditions of this study suggests that these compounds may not be adequately removed during biological wastewater treatment.  相似文献   

18.
The effect of elicitation with linoleic (C18:2) and α-linolenic (C18:3) fatty acids (LLA and α-LNA) was investigated in Panax ginseng C.A. Meyer adventitious roots cultured in 5 l balloon-type bioreactors. Fatty acids were added in culture medium at 0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 μmol l−1 at day 40, at the end of exponential growth phase. Roots were harvested and assayed at day 47. Elicitation with both LLA and α-LNA enhanced accumulation of total polyphenolics and flavonoids in roots compared with control without elicitation. The highest accumulation of flavonoids was observed at 5.0 μmol l−1 for both elicitors. Total phenolics production reached its highest value of about 4.0 mg g−1 DW under the elicitation with 5.0 μmol l−1 LLA and 5.0–20.0 μmol l−1 α-LNA. Meanwhile, α-LNA was more effective than LLA for increasing biomass and ginsenoside production. The biomass of 11.1 g DW l−1 and maximal total ginsenoside content of 7.9 mg g−1 DW were achieved at 5 μmol l−1 α-linolenic acid. The essential polyunsaturated linoleic (C18:2) and α-linolenic (C18:3) fatty acids were accumulated in roots in response to elicitation while content of palmitic (C16:0) and oleic (C18:1) acids declined. The activities of SOD, G-POD and CAT were enhanced by two elicitors to similar extent while APX activity was preferably stimulated by α-LNA. Our results demonstrate that elicitation with α-linolenic acid stimulates production of biomass and secondary metabolites in bioreactor-cultured P. ginseng adventitious roots.  相似文献   

19.
The influence of ammonia on the anaerobic degradation of peptone by mesophilic and thermophilic populations of biowaste was investigated. For peptone concentrations from 5 g l−1 to 20 g l−1 the mesophilic population revealed a higher rate of deamination than the thermophilic population, e.g. 552 mg l−1 day−1 compared to 320 mg l−1 day−1 at 10 g l−1 peptone. The final degree of deamination of the thermophilic population was, however, higher: 102 compared to 87 mg NH3/g peptone in the mesophilic cultures. If 0.5–6.5 g l−1 ammonia was added to the mesophilic biowaste cultures, deamination of peptone, degradation of its chemical oxygen demand (COD) and formation of biogas were increasingly inhibited, but no hydrogen was formed. The thermophilic biowaste cultures were most active if around 1 g ammonia l−1 was present. Deamination, COD degradation and biogas production decreased at lower and higher ammonia concentrations and hydrogen was formed in addition to methane. Studies of the inhibition by ammonia of peptone deamination, COD degradation and methane formation revealed a K i (50%) for NH3 of 92, 95 and 88 mg l−1 at 37 °C and 251, 274 and 297 mg l−1 at 55 °C respectively. This indicated that the thermophilic flora tolerated significantly more NH3 than the mesophilic flora. In the mesophilic reactor effluent 4.6 × 108 peptone-degrading colony-forming units (cfu)/ml were culturable, whereas in the thermophilic reactor effluent growth of only 5.6 × 107 cfu/ml was observed. Received: 24 April 1998 / Received revision: 26 June 1998 / Accepted: 27 June 1998  相似文献   

20.
The dimorphic fungus Mucor indicus was grown in different forms classified as purely filamentous, mostly filamentous, mostly yeast-like and purely yeast-like, and the relationship between morphology and metabolite production, inhibitor tolerance and the cell wall composition was investigated. Low concentrations of spores in the inoculum with subsequent aeration promoted filamentous growth, whereas higher spore concentrations and anaerobic conditions promoted yeast-like growth. Ethanol was the main metabolite with glycerol next under all conditions tested. The yields of ethanol from glucose were between 0.39 and 0.42 g g−1 with productivities of 3.2–5.0 g l−1 h−1. The ethanol productivity of mostly filamentous cells was increased from 3.9 to 5.0 g l−1 h−1 by the presence of oxygen, whereas aeration of purely yeast-like cells showed no such effect. All growth forms were able to tolerate 4.6 g l−1 furfural and 10 g l−1 acetic acid and assimilate the sugars, although with different consumption rates. The cell wall content of the fungus measured as alkali insoluble materials (AIM) of the purely yeast-like cells was 26% of the biomass, compared to 8% of the pure filaments. However, the chitosan concentration of the filaments was 29% of the AIM, compared to 6% of the yeast-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号