共查询到20条相似文献,搜索用时 0 毫秒
1.
Deregowski V Gazzerro E Priest L Rydziel S Canalis E 《The Journal of biological chemistry》2006,281(10):6203-6210
Notch proteins are transmembrane receptors that control cell-fate decisions. Upon ligand binding, Notch receptors undergo proteolytic cleavage leading to the release of their intracellular domain (NICD). Overexpression of NICD impairs osteoblastogenesis, but the mechanisms are not understood. We examined consequences of the constitutive activation of Notch 1 in ST-2 cells. Notch opposed the effects of bone morphogenetic protein (BMP)-2 and Wnt 3a on alkaline phosphatase activity (APA). BMP-2 induced the phosphorylation of Smad 1/5/8 and the transactivation of a BMP/Smad-responsive construct (12xSBE-Oc-pGL3), but the effect was not modified by Notch. BMP-2 had minimal effects on the phosphorylation of the mitogen-activated protein kinases ERK, p38, and JNK, in the absence or presence of NICD. Notch overexpression decreased the transactivating effect of Wnt 3a, cytoplasmic beta-catenin levels, and Wnt-dependent gene expression. Transfection of a mutant beta-catenin expression construct, or the use of a glycogen synthase kinase 3beta inhibitor to stabilize beta-catenin, partially blocked the inhibitory effect of NICD on Wnt signaling and on APA. HES-1 or Groucho1/TLE1 RNA interference enhanced basal and induced Wnt/beta-catenin signaling opposing NICD effects, but only HES-1 silencing enhanced Wnt 3a effects on APA. In conclusion, NICD overexpression prevents BMP-2 and Wnt biological effects by suppressing Wnt but not BMP signaling. HES-1 appears to mediate effects of Notch on osteoblastogenesis. 相似文献
2.
Irie A Habuchi H Kimata K Sanai Y 《Biochemical and biophysical research communications》2003,308(4):858-865
Although genetic studies have suggested that heparan sulfate (HS) is involved in bone morphogenetic protein (BMP)-mediated embryonic morphogenesis, it is unclear whether HS is directly involved in BMP-mediated signaling. Here, we investigate the involvement of HS in BMP-7 signaling. We show that HS and heparin chains specifically bind to BMP-7. Digestion of cell-surface HS with heparitinase interferes with BMP-7-mediated Smad phosphorylation in ROS 17/2.8 osteoblastic cells. Inhibiting sulfation of cell-surface HS with chlorate also causes interruption of Smad phosphorylation. Addition of exogenous heparin to ROS 17/2.8 cells prevents BMP-7-mediated Smad phosphorylation rather than enhances the BMP-7 signal, suggesting that HS should be anchored on the plasma membrane for BMP signaling. Moreover, BMP-7 binding to ROS 17/2.8 cells is inhibited by chlorate treatment and exogenous application of heparin. These results demonstrate that BMP-7 specifically binds to cell-surface HS and the BMP-7-HS interaction is required for BMP-7 signaling. 相似文献
3.
Ichiro Kadouchi Kei Sakamoto Liu Tangjiao Takashi Murakami Eiji Kobayashi Yuichi Hoshino Akira Yamaguchi 《Biochemical and biophysical research communications》2009,378(3):600-604
Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration. 相似文献
4.
Bone morphogenetic protein-15 (BMP-15), an oocyte growth factor belonging to the transforming growth factor-beta superfamily, has recently been shown to be necessary for normal female fertility in mammals. We have previously demonstrated that BMP-15 regulates granulosa cell (GC) proliferation and differentiation; namely, BMP-15 promotes GC mitosis, suppresses follicle-stimulating hormone (FSH) receptor expression, and stimulates kit ligand expression. Although the role of BMP-15 in female reproduction has progressively deserved much attention, there is nothing known to date about the signaling pathway and receptors for BMP-15. Using rat primary GCs and a human GC cell line, COV434, we have now found that administration of BMP-15 causes a rapid and transient phosphorylation, thus activation, of the Smad1/5/8 pathway. BMP-15 also stimulated promoter activity of a selective BMP-responsive reporter construct, further demonstrating the stimulation of Smad1/5/8 signaling by BMP-15. In contrast, BMP-15 stimulation of Smad2 phosphorylation was very weak. To identify the receptors for BMP-15, we utilized recombinant extracellular domains of individual transforming growth factor-beta superfamily receptors and found that activin receptor-like kinase-6 extracellular domain most effectively co-immunoprecipitates with BMP-15, whereas BMP receptor type II extracellular domain was most effective in inhibiting BMP-15 bioactivity on FSH-induced progesterone production and GC thymidine incorporation. We also investigated whether activation of the MAPK pathway is necessary for BMP-15 biological activity and found that the addition of U0126, an inhibitor of ERK1/2 phosphorylation, suppresses BMP-15 activity on GC mitotsis but not on FSH-induced progesterone production, suggesting a selective signaling cascade in GC proliferation and differentiation. 相似文献
5.
6.
Andre F Steinert Benedikt Proffen Manuela Kunz Christian Hendrich Steven C Ghivizzani Ulrich Nöth Axel Rethwilm Jochen Eulert Christopher H Evans 《Arthritis research & therapy》2009,11(5):R148-15
Introduction
The present study compares bone morphogenetic protein (BMP)-4 and BMP-2 gene transfer as agents of chondrogenesis and hypertrophy in human primary mesenchymal stem cells (MSCs) maintained as pellet cultures. 相似文献7.
Three cysteine analogues of bone morphogenetic protein (BMP)-2, BMP2A2C, BMP2N56C, and BMP2E96C, were generated in order to enable the attachment of SH-reactive poly(ethylene glycol) (PEG) at specific sites. Three different approaches (Ap) were used for SH-specific PEGylation: (Ap1) reaction of glutathione activated proteins with thiol PEG; (Ap2) reaction of DTT reduced proteins with orthopyridyl disulfide PEG; (Ap3) reaction of DTT reduced proteins with maleimide PEG. Non-, mono-, and di-PEGylated BMP-2 analogues could be separated by RP-HPLC. Trypsin digestion of PEGylated proteins and Trypsin and GluC double-digestion of N-ethylmaleimide-labeled proteins confirmed that the modifications were site-specific. Surface plasmon resonance analysis of type I and type II receptor binding of the PEGylated BMP-2 analogues revealed that all three PEGylation approaches were equivalent. PEGylation at positions 2 and 96 caused a similar decrease in receptor affinity. PEGylation at position 56 resulted in a larger decrease in affinity for both types of receptors. Mono-PEGylated BMP-2 analogues exhibited intermediate affinities in comparison with unmodified and di-PEGylated proteins. However, the biological activity of the PEGylated BMP-2 analogues as measured in alkaline phosphatase assay was higher than BMP-2 wild-type for the PEGylated BMP2A2C, slightly reduced for the BMP2N56C, and strongly reduced for the BMP2E96C. These results taken together indicate that specific attachment of PEG at engineered sites of BMP-2 is possible and that the attachment site is critical for biological activity. Furthermore, the biological activity of PEGylated BMP-2 analogues in cell culture seems to be determined not only by receptor affinity, but also by other factors such as protein solubility and stability. It is also discussed that the attached PEG interferes with the binding of BMP-2 to modulator proteins, co-receptors, or heparinic sites of proteoglycans in the extracellular matrix. 相似文献
8.
Abe N Lee YP Sato M Zhang X Wu J Mitani K Lieberman JR 《Biochemical and biophysical research communications》2002,297(3):523-527
Regional gene therapy, which involves the delivery of growth factors to a specific anatomic site, has the potential to enhance bone formation in clinical application. Helper-dependent adenoviral vectors, which have deleted all of the viral coding regions, have been shown to be safe and highly efficient with long-lasting transgene expression. In this study, we constructed a helper-dependent adenoviral vector producing bone morphogenetic protein-2 (AdHDBMP-2). The AdHDBMP-2 increased the alkaline phosphatase activity of W-20-17 cells in vitro. In addition, when AdHDBMP-2 infected rat bone marrow cells were implanted into the hindlimbs of SCID mice, orthotopic bone formation was shown at 2 weeks. To our knowledge, this is the first study to demonstrate bone formation with the helper-dependent adenoviral vector with the BMP-2 expression cassette. This type of gene therapy vector could prove to be highly useful for bone augmentation in patients with bone loss associated with trauma, revision total joint arthroplasty, or cancer. 相似文献
9.
Singhatanadgit W Mordan N Salih V Olsen I 《The international journal of biochemistry & cell biology》2008,40(12):2854-2864
Cell responses to bone morphogenetic proteins (BMP) depend on the expression and surface localisation of transmembrane receptors BMPR-IA, -IB and -II. The present study shows that all three antigens are readily detected in human bone cells. However, only BMPR-II was found primarily at the plasma membrane, whereas BMPR-IA was expressed equally in the cytoplasm and at the cell surface. Notably, BMPR-IB was mainly intracellular, where it was associated with a number of cytoplasmic structures and possibly the nucleus. Treatment with transforming growth factor β1 (TGF-β1) caused rapid translocation of BMPR-IB to the cell surface, mediated via the p38 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) pathways. The TGF-β1-induced increase in surface BMPR-IB resulted in significantly elevated BMP-2 binding and Smad1/5/8 phosphorylation, although the receptor was subsequently internalised and the functional response to BMP-2 consequently down-regulated. The results show, for the first time, that BMPR-IB is localised primarily in intracellular compartments in bone cells and that TGF-β1 induces rapid surface translocation from the cytoplasm to the cell surface, resulting in increased sensitivity of the cells to BMP-2. 相似文献
10.
11.
Inhibin is an antagonist of bone morphogenetic protein signaling 总被引:7,自引:0,他引:7
12.
13.
Wnt signaling plays a central role in many processes during embryonic development and in later stages of life. At least three distinct wnt signaling pathways have been described. In 2001, evidence was obtained from genetic studies on some rare hereditary conditions, that the canonical wnt signaling pathway plays an important role in bone formation. Functional studies and experimental analysis of relevant animal models confirmed the anabolic effect of wnt signaling by modulating the differentiation, the proliferation, the activity and finally the apoptosis of (pre)osteoblasts and osteocytes. More recently, also non-canonical wnt signaling was shown to play a role in bone formation. Since there is currently a major lack of anabolic therapeutic agents for the prevention and treatment of osteoporosis this signaling pathway deserves major attention. A big concern, however, is the pleiotropic function of the pathway that needs to be taken into account in order to avoid unwanted side-effects. Preliminary data are already indicating that this might be achieved by targeting sclerostin, a bone-specific extracellular antagonist of canonical wnt signaling. 相似文献
14.
With aging, bone marrow mesenchymal stromal cell (MSC) osteoblast differentiation decreases whereas MSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. Here, we investigated whether activation of cell signaling by strontium ranelate (SrRan) can reverse the excessive adipogenic differentiation associated with aging. In murine MSC cultures, SrRan increased Runx2 expression and matrix mineralization and decreased PPARγ2 expression and adipogenesis. This effect was associated with increased expression of the Wnt noncanonical representative Wnt5a and adipogenic modulator Maf and was abrogated by Wnt- and nuclear factor of activated T-cells (NFAT)c antagonists, implying a role for Wnt and NFATc/Maf signaling in the switch in osteoblastogenesis to adipogenesis induced by SrRan. To confirm this finding, we investigated the effect of SrRan in SAMP6 senescent mice, which exhibit decreased osteoblastogenesis, increased adipogenesis, and osteopenia. SrRan administration at a clinically relevant dose level increased bone mineral density, bone volume, trabecular thickness and number, as shown by densitometric, microscanning, and histomorphometric analyses in long bones and vertebrae. This attenuation of bone loss was related to increased osteoblast surface and bone formation rate and decreased bone marrow adipocyte volume and size. The restoration of osteoblast and adipocyte balance induced by SrRan was linked to increased Wnt5a and Maf expression in the bone marrow. The results indicate that SrRan acts on lineage allocation of MSCs by antagonizing the age-related switch in osteoblast to adipocyte differentiation via mechanisms involving NFATc/Maf and Wnt signaling, resulting in increased bone formation and attenuation of bone loss in senescent osteopenic mice. 相似文献
15.
Hsu YL Huang MS Yang CJ Hung JY Wu LY Kuo PL 《The Journal of biological chemistry》2011,286(43):37335-37346
Bone is a frequent target of lung cancer metastasis and is associated with significant morbidity and a dismal prognosis. Interaction between cancer cells and the bone microenvironment causes a vicious cycle of tumor progression and bone destruction. This study analyzed the soluble factors secreted by lung tumor-associated osteoblast (TAOB), which are responsible for increasing cancer progression. The addition of bone morphogenetic protein-2 (BMP-2), present in large amounts in TAOB conditioned medium (TAOB-CM) and lung cancer patient sera, mimicked the inductive effect of TAOB-CM on lung cancer migration, invasion, and epithelial-to-mesenchymal transition. In contrast, inhibition of BMP by noggin decreases the inductive properties of TAOB-CM and lung cancer patient sera on cancer progression. Induction of lung cancer migration by BMP-2 is associated with increased ERK and p38 activation and the up-regulation of Runx2 and Snail. Blocking ERK and p38 by a specific inhibitor significantly decreases cancer cell migration by inhibiting Runx2 up-regulation and subsequently attenuating the expression of Snail. Enhancement of Runx2 facilitates Rux2 to recruit p300, which in turn enhances histone acetylation, increases Snail expression, and decreases E-cadherin. Furthermore, inhibiting Runx2 by siRNA also suppresses BMP-2-induced Snail up-regulation and cell migration. Our findings provide novel evidence that inhibition of BMP-2 or BMP-2-mediated MAPK/Runx2/Snail signaling is an attractive therapeutic target for osteolytic bone metastases in lung cancer patients. 相似文献
16.
Amina F Zebboudj Minori Imura Kristina Bostr?m 《The Journal of biological chemistry》2002,277(6):4388-4394
Matrix GLA protein (MGP) has been identified as a calcification inhibitor in cartilage and vasculature. Part of this effect may be attributed to its influence on osteoinductive activity of bone morphogenetic protein-2 (BMP-2). To detect binding between MGP and BMP-2, we performed immunoprecipitation using MGP and BMP-2 tagged with FLAG and c-Myc. The results showed co-precipitation of BMP-2 with MGP. To quantify the effect of MGP on BMP-2 activity, we assayed for alkaline phosphatase activity and showed a dose-dependent effect. Low levels of MGP relative to BMP-2 (<1-fold excess) resulted in mild enhancement of osteoinduction, whereas intermediate levels (1-15-fold excess) resulted in strong inhibition. High levels of MGP (>15-fold excess), however, resulted in pronounced enhancement of the osteoinductive effect of BMP-2. Cross-linking studies showed that inhibitory levels of MGP abolished BMP-2 receptor binding. Immunoblotting showed a corresponding decrease in activation of Smad1, part of the BMP signaling system. Enhancing levels of MGP resulted in increased Smad1 activation. To determine the cellular localization of BMP-2 in the presence of MGP, binding assays were performed on whole cells and cell-synthesized matrix. Inhibitory levels of MGP yielded increased matrix binding of BMP-2, suggesting that MGP inhibits BMP-2 in part via matrix association. These results suggest that MGP is a BMP-2 regulatory protein. 相似文献
17.
Zhao B Katagiri T Toyoda H Takada T Yanai T Fukuda T Chung UI Koike T Takaoka K Kamijo R 《The Journal of biological chemistry》2006,281(32):23246-23253
Although bone morphogenetic proteins (BMPs) are clinically useful for bone regeneration, large amounts are required to induce new bone formation in monkeys and humans. We found recently that heparin stimulates BMP activity in vitro (Takada, T., Katagiri, T., Ifuku, M., Morimura, N., Kobayashi, M., Hasegawa, K., Ogamo, A., and Kamijo, R. (2003) J. Biol. Chem. 278, 43229-43235). In the present study, we examined whether heparin enhances bone formation induced by BMPs in vivo and attempted to determine the molecular mechanism by which heparin stimulates BMP activity using C2C12 myoblasts. Heparin enhanced BMP-2-induced gene expression and Smad1/5/8 phosphorylation at 24 h and thereafter, although not within 12 h. Heparitinase treatment did not affect the response of cells to BMP-2. In the presence of heparin, degradation of BMP-2 was blocked, and the half-life of BMP-2 in the culture medium was prolonged by nearly 20-fold. Although noggin mRNA was induced by BMP-2 within 1 h regardless of the presence of heparin, noggin failed to inhibit BMP-2 activity in the presence of heparin. Furthermore, simultaneous administration of BMP-2 and heparin in vivo dose-dependently induced larger amounts of mineralized bone tissue compared with BMP-2 alone. These findings clearly indicate that heparin enhances BMP-induced osteoblast differentiation not only in vitro but also in vivo. This study indicates that heparin enhances BMP-induced osteoblast differentiation in vitro and in vivo by protecting BMPs from degradation and inhibition by BMP antagonists. 相似文献
18.
19.
Reppe S Olstad OK Rian E Gautvik VT Gautvik KM Jemtland R 《Biochemical and biophysical research communications》2004,324(1):218-223
Parathyroid hormone (PTH) exerts potent and diverse effects in bone and cartilage through activation of type 1 PTH receptors (PTH1R) capable of coupling to protein kinase A (PKA) and PKC. We have used macroarrays to identify zinc finger protein butyrate response factor-1 (BRF1) as a novel PTH regulated gene in clonal and normal osteoblasts of human and rodent origin. We further demonstrate that in human osteoblast-like OHS cells, biologically active hPTH(1-84) and hPTH(1-34) stimulate BRF1 mRNA expression in a dose- and time-dependent manner, while the amino-terminally truncated hPTH(3-84) which does not activate PTH1R has no effect. Moreover, using specific stimulators or inhibitors of PKA and PKC activity, the PTH-elicited BRF1 mRNA expression is mediated through the PKA signaling pathway. In mouse calvarial osteoblasts, BRF1 mRNA levels are upregulated by PTH(1-84) and reduced in response to bone morphogenetic protein 2 (BMP-2). Hence, our data showing that BRF1 is expressed in osteoblastic cells and regulated by PTH and BMP-2, suggest an important role for BRF1 in osteoblasts within the molecular network of PTH-dependent bone remodeling. 相似文献
20.
Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2 总被引:1,自引:0,他引:1
JD Kim H Kang B Larrivée MY Lee M Mettlen SL Schmid BL Roman Y Qyang A Eichmann SW Jin 《Developmental cell》2012,23(2):441-448
Bone morphogenetic proteins (BMPs) have diverse functions during development in vertebrates. We have recently shown that BMP2 signaling promotes venous-specific angiogenesis in zebrafish embryos. However, factors that confer a context-dependent proangiogenic function of BMP2 signaling within endothelial cells need to be identified. Here, we report that Disabled homolog 2 (Dab2), a cargo-specific adaptor protein for Clathrin, is essential to mediate the proangiogenic function of BMP2 signaling. We find that inhibition of Dab2 attenuates internalization of BMP receptors and abrogates the proangiogenic effects of BMP signaling in endothelial cells. Moreover, inhibition of Dab2 decreases phosphorylation of SMAD-1, 5, and 8, indicating that Dab2 plays an essential role in determining the outcome of BMP signaling within endothelial cells and may provide a molecular basis for a context-dependent proangiogenic function of BMP2 signaling. 相似文献