首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A structural study of Escherichia coli 50 S ribosomal subunits depleted selectively of proteins L7/L12 and visualized by low-dose electron microscopy has been carried out by multivariate statistical analysis, classification schemes and the new reconstruction technique from single-exposure, random-conical tilt series. This approach has allowed us to solve the three-dimensional structure of the depleted 50 S subunits at a resolution of 3 nm-1. In addition, two distinct morphological populations of subunits (cores) have been identified in the electron micrographs analyzed and have been separately studied in three dimensions. Depleted subunits in the two morphological states present as main features common to these two structures but different from those of the non-depleted subunit (1) the absence of the stalk, (2) a rearrangement of the stalk-base that changes the overall structure of this region. This morphological change is quite noticeable and important, since this region is mapped as a part of the GTPase center. The two conformations differ mainly in the orientation of the area between the L1 region and the head (the probable localization of the peptidyl transferase center) and in the accessibility of the region located below the head. A possible relationship of these structural changes to the functional dynamics of the ribosome is suggested.  相似文献   

2.
The published C-terminal sequence of Escherichia coli 50S ribosomal protein L31, ellipsisRFNK (Brosius, J. (1978) Biochemistry 17, 501-508), differs from that predicted by the gene sequence, ellipsisRFNKRFNIPGSK (GenBank accession no. X78541). This discrepancy might be due to post-translational processing of the protein. To examine this possibility, we have isolated L31 from E. coli strain MRE600 and sequenced the C-terminal tryptic peptide. We find the sequence to be FBIPGSK. Size comparisons of L31 from several E. coli strains demonstrate that all are identical in size to the protein isolated from MRE600 and larger than the previously described protein, indicating that ellipsisRFNKRFNIPGSK represents the true C-terminus of L31. In addition, we show that the failure to identify L31 in many ribosome preparations is probably due to the protein's loose association with the ribosome and its ability to form various intramolecular disulfide bonds, leading to L31 forms with distinct mobilities in gels.  相似文献   

3.
Negatively stained 50 S ribosomal subunits of Escherichia coli   总被引:1,自引:0,他引:1  
Ribosomes are large nucleoproteins of approximately 3 X 10(6) Mr. In contrast to helical or spherical nucleoproteins (viruses) of similar size (which consist of several hundred small asymmetric units reproduced by symmetry), ribosomes are completely asymmetric; therefore, the amount of structural information (defined by the number of independent image elements) necessarily increases from about 10 to 20 to about 1000 to 2000 (at resolutions of the order of 2 nm). With present techniques, only stained single particles can be studied in the electron microscope. Our published work on the 30 S subunit and on the 50 S subunit has demonstrated that three-dimensional reconstructions of stained single particles show a great number of structural details that are reproducible if the particles have the same orientation. One of the main results of this paper is the final proof of this reproducibility from detailed comparisons of individual 50 S subunits and of independent averages over a few (3 to 5) particles in the kidney or crown orientation; in the latter case, even after a chemical modification. The 50 S subunit is non-uniformly stained along the optical axis. It displays a complicated, stain-filled channel-like structure, within which is approximately the partial volume expected for the RNA. The particle shows an irregular but reproducible boundary surface against the stain. At several sites, the channel structure protrudes to the surface. Since the secondary structure of the RNA is well known, one might try to locate it in the subunit after chemical identification of its surface contacts (the 3' end of 23 S RNA and the 3' end of the 5 S RNA have been localized). Most interesting is a groove on the surface, which might accommodate the mRNA.  相似文献   

4.
5.
In previous work we have shown that both puromycin [Weitzmann, C. J., & Cooperman, B. S. (1985) Biochemistry 24, 2268-2274] and p-azidopuromycin [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Coooperman, B. S. (1982) Biochemistry 21, 3809-3817] site specifically photoaffinity label protein L23 to the highest extent of any Escherichia coli ribosomal protein. In this work we demonstrate that L23 that has been photoaffinity labeled within a 70S ribosome by puromycin (puromycin-L23) can be separated from unmodified L23 by reverse-phase high-performance liquid chromatography (RP-HPLC) and further that puromycin-L23 can reconstitute into 50S subunits when added in place of unmodified L23 to a reconstitution mixture containing the other 50S components in unmodified form. We have achieved a maximum incorporation of 0.5 puromycin-L23 per reconstituted 50S subunit. As compared with reconstituted 50S subunits either containing unmodified L23 or lacking L23, reconstituted 50S subunits containing 0.4-0.5 puromycin-L23 retain virtually all (albeit low) peptidyl transferase activity but only 50-60% of mRNA-dependent tRNA binding stimulation activity. We conclude that although L23 is not directly at the peptidyl transferase center, it is sufficiently close that puromycin-L23 can interfere with tRNA binding. This conclusion is consistent with a number of other experiments placing L23 close to the peptidyl transferase center but is difficult to reconcile with immunoelectron microscopy results placing L23 near the base of the 50S subunit on the side facing away from the 30S subunit [Hackl, W., & St?ffler-Meilicke, M. (1988) Eur. J. Biochem. 174, 431-435].  相似文献   

6.
A method is described for the isolation of highly purified proteins from the 50-S subunit of Escherichia coli ribosomes. All the proteins from the large subunit could be isolated with the exception of L14, L26, L31 and L34. The isolated proteins are functionally active in reconstituted particles. The method consists of successive NH4Cl/EtOH and LiCl washing steps, which split off distinct groups of proteins from the ribosome. The protein groups are further separated by a combination of gel filtration (Sephadex G-100) and ion-exchange chromatography (carboxymethylcellulose) in the presence of 6 M urea, at neutral pH and 4 degrees C. The purity of the proteins was analyzed by two-dimensional gel electrophoresis. In addition, ten protein complexes were isolated and identified.  相似文献   

7.
A Zantema  J A Maassen  J Kriek  W M?ller 《Biochemistry》1982,21(13):3069-3076
So that the topographic and dynamic properties of the L7/L12--L10 complex in the 50S ribosome of Escherichia coli could be studied, methods and reagents were developed in order to introduce fluorescent groups at specific positions of these proteins. In the case of L7/L12, this was done by attaching an aldehyde group to Lys-51 of the protein by using 4-(4-formylphenoxy)butyrimidate or by converting the amino terminus of L12 into an aldehyde group by periodate oxidation. Subsequent reaction of the aldehyde groups with newly developed hydrazine derivatives of fluorescein and coumarin resulted in specifically labeled L7/L12 derivatives. L10 was modified at the single cysteine residue with N-[7-(dimethylamino)-4-methylcoumarinyl]maleimide. The fluorescent proteins L10 and L7/L12 could be reconstituted into 50S ribosomes. The resulting specifically labeled 50S ribosomes show 25--100% activity in elongation factor G dependent GTPase as well as in polyphenylalanine synthesis. The fluorescent properties of the labeled 50S ribosomes show that these fluorescent derivatives are suitable for energy transfer studies.  相似文献   

8.
9.
By primer extension inhibition assays, 70S ribosomes bound with higher affinity, or stability, than did 30S subunits to leaderless mRNAs containing AUG or GUG start codons. Addition of translation initiation factors affected ribosome binding to leaderless mRNAs. Our results suggest that translation of leaderless mRNAs might initiate through a pathway involving 70S ribosomes or 30S subunits lacking IF3.  相似文献   

10.
Ribosomal protein L7/L12 from Escherichia coli was modified specifically at Lys-51 with 4-(6-formyl-3-azido-phenoxy)butyrimidate. Reconstitution of ribosomal cores, lacking L7/L12, with imidate-modified L7/L12 resulted in back formation of 50S particles which were fully active in elongation-factor-dependent processes. By use of the formylazidophenoxy moiety as hapten, the position of Lys-51 of L7/L12 on the 50S ribosome was determined by immune electron microscopy. The results show that an L7/L12 dimer is present in the L7/L12 stalk in such a way that Lys-51 is located at the far cytoplasmic end of the stalk. The experimental data are discussed in relation to a proposed model for the L7/L12 dimer.  相似文献   

11.
In vitro mutagenesis of rplB was used to generate changes in a conserved region of Escherichia coli ribosomal protein L2 between Gly221 and His231. Mutants were selected by temperature sensitivity using an inducible expression system. A mutant L2 protein with the deletion of Thr222 to Asp228 was readily distinguishable from wild-type L2 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and ribosomes from the strain overexpressing this mutant protein were characterized by sucrose density gradient centrifugation and protein composition. In addition to 30 S and 50 S ribosomal subunits, cell lysates contained a new component that sedimented at 40 S in 1 mM Mg2+ and at 48 S in 10 mM Mg2+. These particles contained mutant L2 protein exclusively, completely lacked L16, and had reduced amounts of L28, L33, and L34. They did not reassociate with 30 S ribosomal subunits and were inactive in polyphenylalanine synthesis. Other mutants in the same conserved region, including the substitution of His229 by Gln229, produced similar aberrant 50 S particles that sedimented at 40 S and failed to associate with 30 S subunits.  相似文献   

12.
The 50 S ribosomal subunits from Escherichia coli were modified by reaction with 2-iminothiolane under conditions in which 65 sulfhydryl groups, about 2/protein, were added per subunit. Earlier work showed that protein L7/L12 was modified more extensively than the average but that nearly all 50 S proteins contained sulfhydryl groups. Mild oxidation led to the formation of disulfide protein-protein cross-links. These were fractionated by urea gel electrophoresis and then analyzed by diagonal gel electrophoresis. Cross-linked complexes containing two, three, and possibly four copies of L7/L12 were evident. Cross-links between L7/L12 and other ribosomal proteins were also formed. These proteins were identified as L5, L6, L10, L11, and, in lower yield, L9, L14, and L17. The yields of cross-links to L5, L6, L10, and L11 were comparable to the most abundant cross-links formed. Similar experiments were performed with 70 S ribosomes. Protein L7/L12 in 70 S ribosomes was cross-linked to proteins L6, L10, and L11. The strong L7/L12-L5 cross-link found in 50 S subunits was absent in 70 S ribosomes. No cross-links between 30 S proteins and L7/L12 were observed.  相似文献   

13.
Protein L11 from the 50S ribosomal subunit of Escherichia coli A19 was purified by a method using nondenaturing conditions. Its shape in solution was studied by hydrodynamic and low-angle x-ray scattering experiments. The results from both methods are in good agreement. In buffers similar to the ribosomal reconstitution buffer, the protein is monomeric at concentrations up to 3 mg/mL and has a molecular weight of 16 000-17 000. The protein molecule resembles a prolate ellipsoid with an axial ratio of 5-6:1 a radius of gyration of 34 A, and a maximal length of 150 A. From the low-angle x-ray diffraction data, a more refined model of the protein molecule has been constructed consisting of two ellipsoids joined by their long axes.  相似文献   

14.
15.
Large ribonucleoprotein subparticles were recovered upon ribonuclease digestion of the 50 S ribosomal subunits of Escherichia coli, partially deproteinized by LiCl. Both their RNA and their protein compositions were analysed. The subunits, treated with LiCl at a concentration of 5.5 m, released an homogeneous subparticle containing proteins L3, L4, L13, L17, L22 and L29, about 70% of the 13 S fragment of 23 S RNA and about 50% of the 18 S one. Slightly larger species of subparticles were obtained from 50 S subunits treated with LiCl at concentrations between 3 m and 5 m; they contained in addition proteins L20, L21 and L23 or L2, L14, L20, L21 and L23 and a few small 23 S RNA fragments. No large subparticle was recovered from the 6 m-LiCl-treated 50 S subunits which contain only proteins L3, L13 and L17. These LiCl subparticles were compared with those obtained from intact, unfolded and sodium doecyl sulphatetreated 50 S subunits.These studies reveal that in the presence of 0.10 m-magnesium acetate there is a very compact area within 50 S subunits consisting of proteins L3, L4, L13, L17, L22 and L29 and of about 60% of 23 S RNA; this area probably has an essential structural role. The results also show that 23 S RNA has a more folded conformation when within the 50 S subunit than when isolated, this conformation being stabilized by some of the 50 S proteins, in particular proteins L4, L22, L20 and L21. Finally these data permit a more definite localization of the primary and/or secondary binding sites of proteins L2, L3, L4, L14, L17, L20, L21 and L22 on 23 S RNA.  相似文献   

16.
17.
18.
19.
20.
Translation initiation factor 3 (IF-3) was bound noncovalently to Escherichia coli 50S ribosomal subunits. Irradiation of such complexes with near-ultraviolet light (greater than 285 nm) resulted in covalent attachment of initiation factor 3 to the 50S subunit. Photo-cross-linking attained its maximum level of 40% of that which was noncovalently bound after 90 min of irradiation. Cross-linking was abolished in the presence of either 0.5 M NH4C1 or 0.25 mM aurintricarboxylic acid, indicating that specific binding of initiation factor 3 to the ribosome was a prerequisite for subsequent covalent attachment. Further analysis showed that all the IF-3 was covalently bound to a small number of 50S subunit proteins. The major cross-linked proteins were identified as L2, L7/L12, L11, and L27 by immunochemical techniques. These results are discussed in light of the proposed mechanism for IF-3 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号