首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mortality of larval, pupal, and adult western cherry fruit fly, Rhagoletis indifferens (Tephritidae) exposed to the steinernematid nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema intermedium, was determined in the laboratory and field. Larvae were the most susceptible stage, with mortality in the three nematode treatments ranging from 62 to 100%. S. carpocapsae and S. feltiae were equally effective against larvae at both 50 and 100 infective juveniles (IJs)/cm2. S. intermedium was slightly less effective against larvae than the other two species. Mortalities of R. indifferens larvae at 0, 2, 4, and 6 days following their introduction into soil previously treated with S. carpocapsae and S. feltiae at 50 IJs/cm2 were 78.6, 92.5, 95.0, and 77.5% and 87.5, 52.5, 92.5, and 70.0%, respectively, and at 100 IJs/cm2 were 90.0, 92.0, 100.0, and 84.0% and 90.0, 50.0, 42.0, and 40.0%, respectively. There was no decline in mortality caused by S. carpocapsae as time progressed, whereas there was in one test with S. feltiae. Larval mortalities caused by the two species were the same in a 1:1:1 vermiculite:peat moss:sand soil mix and a more compact silt loam soil. In the field, S. carpocapsae and S. feltiae were equally effective against larvae. Pupae were not infected, but adult flies were infected by all three nematode species in the laboratory. S. carpocapsae was the most effective species at a concentration of 100 IJs/cm2 and infected 11–53% of adults that emerged. The high pathogenicity of S. carpocapsae and S. feltiae against R. indifferens larvae and their persistence in soil as well as efficacy in different soil types indicate both nematodes hold promise as effective biological control agents of flies in isolated and abandoned lots or in yards of homeowners.  相似文献   

2.
The susceptibility of pupating larvae of pollen beetles, Meligethes spp. Stephens (Coleoptera: Nitidulidae) and brassica pod midges, Dasyneura brassicae Winnertz (Diptera: Cecidomyidae) to entomopathogenic nematodes (Nematoda: Rhabditida) was studied in the laboratory. The results showed that brassica pod midge larvae were almost unaffected by the tested nematodes (Steinernema bicornutum, S. feltiae and Heterorhabditis bacteriophora) whereas successful pupation of pollen beetle larvae was reduced with increasing number of nematodes (S. bicornutum, S. carpocapsae, S. feltiae and H. bacteriophora). The exposed larvae had been collected in the field and some of the pollen beetle larvae were parasitised by parasitoid wasps. It appeared that parasitised larvae were less affected by nematodes than non-parasitised larvae.  相似文献   

3.
The susceptibility of larvae of the leek moth, Acrolepiopsis assectella Zeller (Lepidoptera: Acrolepiidae) to different concentrations of an autochthonous strain of Steinernema feltiae (Rhabditida: Steinernematidae) was examined in laboratory experiments using Petri dishes. The efficacy of this strain in pots and field experiments was also evaluated. High mortality (80%–100%) of leek moth larvae was observed when these larvae were exposed to low concentrations (3 × 103 to 1 × 104 IJs/m2) of S. feltiae under laboratory conditions. Foliar application of 30,000 IJs/leek in pot experiments caused a 98% reduction in leek moth larvae. Field experiments showed a 87.7% reduction of leek moth larvae with the nematode treatment, significantly higher than the 22% reduction with the Bacillus thuringiensis treatment. The efficacy of the treatments with S. feltiae in relation to the microhabitat of the leek moth larvae between the interfolded leaves of the leek is discussed.  相似文献   

4.
Infectivity of six entomopathogenic nematode (EPNs) species against Bactrocera oleae was compared. Similar infection levels were observed when third-instar larvae were exposed to infective juveniles (IJs) on a sand-potting soil substrate. When IJs were sprayed over naturally infested fallen olives, many larvae died within treated olives as well as in the soil; Steinernema feltiae caused the highest overall mortality of 67.9%. In addition, three laboratory experiments were conducted to optimize a time period for S. feltiae field application. (1) Abundance of fly larvae inside fallen olives was estimated over the 2006–2007 season with the highest number of susceptible larvae (3 mm and larger) per 100 olives being observed during December, 2006. (2) S. feltiae efficacy against fly larvae dropped to the soil post-IJ-application was determined. B. oleae added to the substrate before and after nematode application were infected at similar levels. (3) Effect of three temperature regimes (min–max: 10–27, 6–18, and 3–12 °C) corresponding to October through December in Davis, California on S. feltiae survival and infectivity was determined. After 8 weeks, the IJs at the 3–12 °C treatment showed the highest survival rate. However, the cold temperature significantly limited S. feltiae infectivity. Our results demonstrate that B. oleae mature larvae are susceptible to EPN infection both in the soil and within infested olives. Being the most effective species, S. feltiae may have the potential to suppress overwintering populations of B. oleae. We suggest that November is the optimal time for S. feltiae field application in Northern California.  相似文献   

5.
Otto Nielsen 《BioControl》2003,48(4):431-446
Isolates of different Steinernema species (S. affine, S. bicornutum, S. feltiae and Steinernema C1) were used in mortality assays with third instar larvae of Delia radicum (L.) (Diptera: Anthomyiidae). The nematode isolates had been obtained by baiting soil regularly grown with cabbage. One isolate (S. feltiae) was the result of a natural infection of a D. radicum puparium. The highest mortality (77%) was obtained with an isolate of S. feltiae (DK1). The isolate DK1 was also used in tests with all larval stages of D. radicum. Mortality around 60% was observed for second and third instar larvae, while first instar larvae showed very low or no susceptibility. Maximum mortality of second and third instar larvae was reached applying only 25 nematodes per larva. Observations of larvae that pupated revealed that some of these puparia contained nematodes. Experiments with hatching puparia showed that a high proportion was infected by nematodes if the flies were prevented from leaving nematode-containing soil. In addition to mortality, the ability of the nematodes to successfully reproduce in the insects was studied. It was found that the species S. feltiae and S. bicornutum reproduced in D. radicum larvae and adults with S. feltiae being the most successful.  相似文献   

6.
Sancassania polyphyllae (Acari: Acaridae) adult female mites will feed on insect cadavers and infective juveniles (IJs) of entomopathogenic nematodes. Our objective was to determine whether S. polyphyllae has a food preference when offered a choice between tissues of Polyphylla fullo (Coleoptera: Scarabaeidae) or Galleria mellonella (Lepidoptera: Pyralidae), or IJs of Steinernema feltiae (Rhabditida: Steinernematidae) or IJs of Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). When offered a choice between no food and one of the different food sources, P. fullo, G. mellonella or S. feltiae IJs, S. polyphyllae had a significant preference for food sources compared to no food. When it was offered either no food or H. bacteriophora, there was no significant difference in the mite distribution. When offered two different food choices, P. fullo or G. mellonella, P. fullo or S. feltiae, and P. fullo or H. bacteriophora, the mite showed significant preferences for P. fullo larvae. In S. feltiae vs. G. mellonella and S. feltiae vs. H. bacteriophora experiments, S. polyphyllae showed significant a preference for S. feltiae. In three-choice experiments, S. polyphyllae had a preference for P. fullo, followed by S. feltiae, G. mellonella and H. bacteriophora, respectively. Our data confirm, in part, our hypothesis that when offered different food choices, this mite species prefers tissues of its phoretic host, P. fullo over lepidopteran host tissues or living IJs. Based on these laboratory data, H. bacteriophora should be used as a biological control agent against P. fullo over a Steinernema species.  相似文献   

7.
The efficacy of five entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae was tested against the neonate larvae of Capnodis tenebrionis. The nematode strains screened included two of Steinernema carpocapsae (Exhibit and M137), and one each of S. feltiae (S6), S. arenarium (S2), and Heterorhanditis bacteriophora (P4). Exposure of neonate larvae of Capnodis to 10 and 150 infective juveniles (IJs) per larva (equivalent to 3 and 48 IJs/cm2 respectively) in test tubes with sterile sand, resulted in mortality between 60–91% and 96–100%, respectively. At a concentration of 150 IJs/larva, all of the nematode strains were highly virulent. Both S. carpocapsae strains (Exhibit and M137) caused infection and mortality to larvae more quickly than the other strains. However, at a lower concentration assay (10 IJs/larva), S. arenarium was the most virulent strain. The penetration rate as an indicator of entomopathogenic nematode infection was also evaluated. The highest value was recorded for S. arenarium (36%), followed by H. bacteriophora (30.6%), S. feltiae (23.1%), and S. carpocapsae (20.7%).  相似文献   

8.
The shore fly, Scatella stagnalis (Fallén) (Diptera: Ephydridae) is an important insect pest of greenhouse crops. We evaluated two different Spanish isolates of entomopathogenic nematodes, Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) and Steinernema arenarium (Artyukhovsky) (Rhabditida: Steinernematidae), and two commercially available strains, Steinernema feltiae (Nemaplus®) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae) (Nematop®) against shore flies. In tests conducted in 24-well plate filter paper applied at 5, 11, 22, 44 and 88 nematodes per larva, all nematodes produced significant shore fly larval mortality. The lowest concentration tested was enough to obtain high larval mortality (65.2–87.0%). The nematodes Steinernema feltiae and Steinernema arenarium, which parasitized the shore fly larvae faster, also penetrated in higher number in the shore fly larva (4.6–8.8% penetration rate). In bioassays conducted in algae, Steinernema feltiae, applied at 50 nematodes/cm2, caused highest (100%) and Steinernema arenarium lowest shore fly mortality (94%). Our results suggest that entomopathogenic nematodes appear feasible for controlling shore flies but further tests are needed to determine their efficacy in the field.  相似文献   

9.
In laboratory and greenhouse studies, the invading ability, virulence, and mortality caused by Stinernema feltiae and Heterorhabditis bacteriophora were compared. After one and two days of exposure to either nematode species, the mortality of Colordo potato beetle (CPB) Leptinotarsa decemlineata larvae at different instars, third and fourth, was recorded and the number of nematodes invading cadavers was more than the number of nematodes inside the larvae at the late last instar (one day before pre-pupa). Two concentrations, 250 and 500 IJs/dish, infective juvenile nematodes/0.5 ml were tested on different CPB larval instar. S. feltiae was more effective, with fourth instar rather than third and late last instar. On the other hand, H. bacteriophora showed a very weak effect with L. decemlineata. Also it was clear that S. feltiae was more effective and faster than H. bacteriophora: more than 70% of larvae were killed within 24 hours compared with H. bacteriophora which killed 40% of larvae within 48–72 hours. A significant difference in invading efficiency was observed with concentration 2500 IJs/pot in the greenhouse test. The number of adult females found in the cadavers of L. decemlineata larvae was always higher than the number of males. Foliage application of S. feltiae and H. bacteriophora resulted in a significant reduction of the number of damaged leaves and a lower index of damage compared with that in the control. We conclude that S. feltiae has significant potential and can help in the management of the Colorado potato beetle.  相似文献   

10.
The guava weevil, Conotrachelus psidii, is a major pest of guava in Brazil and causes severe reduction in fruit quality. This weevil is difficult to control with insecticides because adults emerge over a long period, and larvae develop to the fourth-instar inside the fruit and move to the soil for pupation. We assessed the virulence of entomopathogenic nematodes to fourth-instar larvae in soil by comparing their susceptibility to nine species or strains: Heterorhabditis bacteriophora HP88, H. baujardi LPP7, and LPP1, H. indica Hom1, Steinernema carpocapsae All and Mexican, S. feltiae SN, S. glaseri NC, and S. riobrave 355. In petri dish assays with sterile sand at a concentration of 100 infective juveniles (IJs) of a given nematode species/strain, larval mortality ranged from 33.5 to 84.5%, with the heterorhabditids being the most virulent. In sand column assays with H. baujardi LPP7, H. indica Hom1, or S. riobrave 355 at concentrations of 100, 200, and 500 IJs, mortality was greater than the control only for H. baujardi (62.7%) and H. indica (68.3%) at the highest concentration. For H. baujardi LPP7 in a petri dish assay, the time required to kill 50 and 90% of the larvae (LT50 and LT90) for 100 IJs was 6.3 and 9.9 days, whereas the lethal concentration required to kill 50 and 90% of the larvae (LC50 and LC90) over 7 days was 52 and 122.2 IJs. In a greenhouse study with guava trees in 20-L pots, 10 weevil larvae per pot, and concentrations of 500, 1000 or 2000 IJs, H. baujardi LPP7 caused 30 and 58% mortality at the two highest concentrations. These results show that H. baujardi is virulent to fourth-instar larvae and has potential as a biological control agent in IPM programs.  相似文献   

11.
The survival and infectivity of the infective juveniles of two species of entomopathogenic nematodes, Steinernema feltiae (Rhabditida: Steinernematidae) Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae), were determined after exposure for 72 h to two concentrations of the herbicides glyphosate and MCPA, as well as to the combination of the two herbicides (glyphosate + MCPA). For all herbicide treatments, concentrations and exposure times, S. feltiae was more tolerant to the herbicides than H. bacteriophora. The exposure of entomopathogenic nematodes to glyphosate + MCPA caused significantly higher mortality (26.33–57.33%) than glyphosate (0.67–15%) or MCPA (2.33–19%) alone. These results confirm the synergistic effect of the glyphosate + MCPA combination on the mortality in these nematodes. Nematode infectivity of Galleria mellonella larvae in response to the herbicides presence was evaluated in Petri dish assays containing sterile sand. Nematode infectivity was not significantly reduced by exposure to herbicides in S. feltiae but H. bacteriophora was less tolerant. Synergistic effect was obtained in the nematode mortality test but no synergistic effect was observed in the nematode infectivity assay. Our results suggest that possible synergistic effects of agrochemicals on survival of nematodes should be tested before mixing with entomopathogenic nematodes.  相似文献   

12.
In laboratory tests, larvae of the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), and the sugarbeet wireworm (SBW), Limonius californicus (Mannerheim), were exposed to the nematodes Steinernema feltiae Filipjev (Mexican strain) (= Neoaplectana carpocapsae) and S. glaseri Steiner in soil. S. feltiae caused significantly higher mortality in SBW larvae than did S. glaseri, but both nematode species were equally effective against CPB larvae. The minimum concentration of S. feltiae for 100% mortality of CPB larvae after 13 days was 157 nematodes/cm² of soil, and the LC₅₀ based on 6-day mortality was 47.5 nematodes/cm²; in contrast, 100% mortality of SBW larvae was not achieved with even the highest concentration tested, 393 nematodes/cm². CPB adults emerging from nematode-contaminated soil were not infected. In field cage tests, S. feltiae applied to the soil surface at the rates of 155 and 310 nematodes/cm² soil caused 59% and 71% mortality, respectively, of late-fourth-instar spring-generation CPB, and 28% and 29% mortality, respectively, of SBW. No infection was obtained when larvae of summer generation CPB and SBW were placed in the same cages approximately 6 weeks after nematodes were applied to the soil. Inundative soil applications of S. feltiae, though cost prohibitive at present, were effective in reducing caged CPB and SBW field populations.  相似文献   

13.
Larvae of Deliaradicum Linnaeus (Diptera: Anthomyiidae) wereexposed to Steinernema feltiae Filipjev(Rhabditida) to study the ability of thenematodes to fulfill their life cycle (recycle)in this host. In addition, the recycling ofSteinernema and Heterorhabditis(Rhabditida) species was studied in larvae ofthe following insects: Meligethes spp.Stephens (Coleoptera: Nitidulidae),Dasyneura brassicae Winnertz (Diptera:Cecidomyidae), Ceutorrhynchus assimilisPaykull, C. pallidactylus Marsham (Coleoptera: Curculionidae) and Mamestrabrassicae Linnaeus (Lepidoptera: Noctuidae).All larval instars of D. radicum werestudied (larvae live and pupate in soil)whereas the final instars of the remaininginsects were studied (larvae only pupate in soil).On average, the following numbers of infectivejuveniles were produced in the different hosts:1,200–1,400 in C. assimilis; 700–1,300 inMeligethes spp. and 47,000 in M.brassicae. In D. radicum, around 400infective juveniles were produced on average inthe smallest larvae and around 3,500 in thelargest larvae. The highest number of nematodesrecorded in a D. radicum larva (thirdinstar) was 9,500 infective juveniles. Thenumber of nematodes produced in D.radicum cadavers was positively related to thesize of the insect host, but large variationwas observed.  相似文献   

14.
The codling moth (Cydia pomonella L.) is a serious pest of pome fruit. Diapausing cocooned larvae overwinter in cryptic habitats in the soil or in the bark of infested trees. The entomopathogenic nematode Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) is used to control diapausing codling moth larvae. The objective of this study was to define environmental conditions favouring the performance of the nematodes. Cocooned larvae were more susceptible than non-cocooned larvae. Susceptibility of pupae was low. To determine the influence of decreasing water activity (aw-value) on the activity of the nematodes, mortality of codling moth larvae and Galleria mellonella L. were tested in sand-sodium-polyacrylate mixtures of variable water activity. S. feltiae was able to infect both insects at aw-values >0.9. Cocooned larvae of both insects died at lower aw-values than non-cocooned larvae. Mortality of cocooned larvae did not further increase after half an hour of exposure to nematodes, whereas the mortality of non-cocooned larvae increased with increasing exposure time. LC50 and LC90 considerably decrease with increasing RH. The negative influence of the relative humidity (macro environment) was less important than the effect of the water activity in the bark substrate (micro environment). The micro environment can be manipulated by applying S. feltiae with higher volumes of water. A surfactant-polymer-formulation significantly increased nematode efficacy and can buffer detrimental environmental effects.  相似文献   

15.
The effect of the predatory miteHypoaspis aculeifer Canestrini (Acarina:Laelapidae) on soil-dwelling stages of thewestern flower thrips (WFT) Frankliniellaoccidentalis Pergande (Thysanoptera: Thripidae)and the influence of combined releases of H.aculeifer and two entomopathogenic nematodes(EPNs) Heterorhabditis bacteriophora Poinar(Rhabditida: Heterorhabditidae) (strain HK3,HK3) and Steinernema feltiae Filipjev(Rhabditida: Steinernematidae) (Nemaplus®,SFN) were investigated in pot trials usingseedlings of green beans (Phaseolus vulgarisL.). Ten H. aculeifer adults per pot and 400infective juveniles (IJs) cm–2 soil, of the twoEPN strains were used. In comparison withuntreated control, H. aculeifer reduced theproportion of adult F. occidentalis emergenceby 46%, while SFN and HK3 led to a reductionin adult thrips emergence by 46% and 61%,respectively. Significant differences in adultWFT emergence were found between combinedtreatments of EPNs and H. aculeifer, andindividual applications of EPNs and/or H.aculeifer, with significantly lower adultthrips emergence in the combined treatments.These findings highlight the potential for acombined use of EPNs with H. aculeifer for thecontrol of soil-dwelling stages of thrips.  相似文献   

16.
Soil texture, chemistry and moisture have a profound effect upon the activity and persistence of entomopathogenic nematodes (EPNs). Whereas nematodes’ natural habitat is within the soil, ticks and other arthropod pests prefer to stay on the soil surface and under stones or leaf litter; they spend much of their life cycle in the humid environment of the soil upper layer, therefore consideration of the effect of the soil environment on nematode activity is a pre-requisite for the sucessful use of EPNs against arthropod pests. In the present study we investigated the effects of soil type, and humidity on various nematode strains and on their effectiveness against ticks. Many infective juveniles (IJs) of Steinernema carpocapsae and S. riobrave were found in the uppermost soil layer whereas the heterorhabditid strains were almost absent from the upper 6 cm of the soil profile. The IJs of S. feltiae, and the S. carpocapsae strain S-20, exhibited an intermediate behavior. It was found that the activity of IJs of S. carpocapsae in the soil upper layer (1 cm depth) was strongly affected by soil type: the greatest number of IJs were recorded from sandy loam soil; less were found in the lighter soils – ‘Marine sand’ and ‘Calcareous sandstone’ – and only very few were recovered from heavy soils. Strikingly, even when the soil moisture was low and the number of nematodes found in the upper layer correspondingly low, tick mortality remained high. The results demonstrate: (a) the possible use of the nematodes as an anti-tick agent; (b) the importance of knowing the exact interaction of nematodes with the immediate environment of the pest, in order to optimize the pest-control activity of the nematode.  相似文献   

17.
Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a harmful invasive fruit pest, which is currently spreading in Europe. Since its arrival in 2008, the spotted wing drosophila has caused major losses in several soft-skinned fruit crops. This critical situation urgently requires efficient practices of residue-free pest control. In the present laboratory study, entomopathogenic nematodes (EPNs) were investigated for their ability to infect larvae and pupae of D. suzukii within directly sprayed fruit, fruit placed on soil, and soil. Steinernema feltiae Filipjev (Rhabditida: Steinernematidae), and Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae) were more efficient at infecting soil-pupating host larvae than Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) at application rates ranging from 25 to 400 EPN cm?2. Applied as a soil drench, S. feltiae and S. carpocapsae were able to infect D. suzukii larvae in the soil as well as hidden inside fruit. Direct application of EPNs on the fruit was less successful, although emergence of flies was significantly reduced.  相似文献   

18.
The compatibility of infectivejuveniles (IJs) of entomopathogenic nematodes, Steinernema feltiae, and chemical insecticides tocontrol larval stages of the South American leafminer,Liriomyza huidobrensis, was investigated.Initially the effect of direct IJ exposure to 5insecticides (abamectin, deltamethrin, dimethoate,heptenophos and trichlorfon) for 24 hours was testedagainst Galleria mellonella in a standard sandtube bioassay. Trichlorfon and dimethoate did notreduce the nematodes ability to locate and infect G. mellonella larvae to an unacceptable level. However,nematode infectivity was significantly reducedfollowing exposure to abamectin, deltamethrin andheptenophos. Secondly, IJ infectivity for L.huidobrensis in the presence of dry pesticideresidues on foliage was tested. No significantdetrimental effects on the level of control of L. huidobrensis was recorded when compared with theeffect of nematodes applied to residue free foliage.The integration of these agents into a pest managementprogramme is discussed.  相似文献   

19.
B. Zelazny 《BioControl》1985,30(2):121-124
Bioassay indicated that 1 st instar larvae ofOryctes rhinoceros are resistant to infections by the nematodeSteinernema feltiae (estimated LD50: 90 nematodes) but thatTirathaba rufivena larvae larger than 15 mm are highly susceptible (estimated LD50: 3 nematodes). The “All” strain and the “mexican” strain ofS. feltiae gave very similar responses. In a field trial 300,000 nematodes were sprayed on each of 25 palms to controlT. rufivena. Although some mortality from nematodes was observed, the treatment failed to reduce the pest population significantly.  相似文献   

20.
Entomopathogenic nematodes (EPNs) are one of the best non-chemical alternatives for insect pest control, with native EPN strains that are adapted to local conditions considered to be ideal candidates for regional biological control programs. Virulence screening of 17 native Mediterranean EPN strains was performed to select the most promising strain for regional insect pest control. Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain produced 7%, 91% and 33% larval mortality for the insects Agriotes sordidus (Illiger) (Coleoptera: Elateridae), Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), respectively, and was selected as the most promising strain. The S. feltiae Rioja strain-S. littoralis combination was considered the most suitable to develop the Rioja strain as a biocontrol agent for soil applications. The effect of soil texture on the virulence of the Rioja strain against S. littoralis was determined through dose-response experiments. The estimated LC90 to kill larvae in two days was 220, 753 and 4178 IJs/cm2 for soils with a clay content of 5%, 14% and 24%, respectively, which indicates that heavy soils produced negative effects on the virulence of the Rioja strain. The nematode dose corresponding to the LC90 for soils with a 5% and 14% clay content reduced insect damage to Capsicum annuum Linnaeus (Solanales: Solanaceae) plants under greenhouse microcosm conditions. The results of this research suggest that an accurate characterization of new EPN strains to select the most suitable combination of insect, nematode and soil texture might provide valuable data to obtain successful biological control under different ecological scenarios in future field applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号