首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Declines in bird populations in agricultural regions of North America and Europe have been attributed to agricultural industrialization, increases in use of agrochemical application, and increased predation related to habitat modification. Based on count data compiled from Breeding Bird Survey (BBS) from 1974 to 2012, Christmas Bird Count (CBC) collected from 1914 to 2013, and hunter data from Annual Game Take Survey (AGTS) for years 1948–2010, ring‐necked pheasants (Phasianus colchicus) in California have experienced substantial declines in agricultural environments. Using a modeling approach that integrates all three forms of survey data into a joint response abundance index, we found pheasant abundance was related to the amount of harvested and unharvested crop land, types of crops produced, amount of total pesticide applied, minimum temperature, precipitation, and numbers of avian competitors and predators. Specifically, major changes in agricultural practices over the last three decades were associated with declines in pheasant numbers and likely reflected widespread loss of habitat. For example, increases in cropland were associated with increased pheasant abundance during early years of study but this effect decreased through time, such that no association in recent years was evidenced. A post hoc analysis revealed that crops beneficial to pheasant abundance (e.g., barley) have declined substantially in recent decades and were replaced by less advantageous crops (e.g., nut trees). An additional analysis using a restricted data set (1990–2013) indicated recent negative impacts on pheasant numbers associated with land use practices were also associated with relatively high levels of pesticide application. Our results may provide valuable information for management policies aimed at reducing widespread declines in pheasant populations in California and may be applicable to other avian species within agricultural settings. Furthermore, this general analytical approach is not limited to pheasants and could be applied to other taxa for which multiple survey data sources exist.  相似文献   

2.
    
Once nearly extirpated, the Eastern Population (EP) of Greater Sandhill Cranes (Grus canadensis tabida) has increased in number and expanded its range in breeding and wintering areas. Data from Christmas Bird Counts (CBCs) and Breeding Bird Surveys (BBSs) were used to delineate changes in the wintering and breeding area distributions during the period from 1966 to 2013. Crane densities were plotted to the centroid of CBC circles or BBS routes, and the Geographic Mean Centers (GMCs) for wintering and breeding populations were calculated. The number of Greater Sandhill Cranes detected during the breeding season has steadily increased since 1966, with just six birds observed in 1966 and 1046 observed in 2013. The GMC of the Sandhill Crane breeding population has remained in Wisconsin during the 47‐yr time frame. The total number of Sandhill Cranes counted in the eastern United States during CBCs grew from 423 in 1965–1966 to 46,194 in 2012–2013, with a peak number of 55,826 in 2011–2012. The GMC of wintering Greater Sandhill Cranes was located in Florida during the periods from 1966 to 1977 and 1978 to 1989, but shifted north‐northwest by nearly 4° of latitude (into Georgia) by 1990–2001. By 2002–2013, the GMC had shifted an additional degree north as well as almost a degree west in longitude. Greater Sandhill Cranes in the EP may continue to winter further north and remain in more northerly areas later in the fall before migrating further south. Factors such as annual weather, long‐term climate change, and changes in land use may influence future population trends and changes in both the breeding and wintering ranges of the EP of Sandhill Cranes.  相似文献   

3.
    
Abstract Annual surveys of wildlife populations provide information about annual rates of change in populations but provide no information about when such changes occur. However, by combining data from 2 annual surveys, conducted in different parts of the year, seasonal components of population change can be estimated. We describe a hierarchical model for simultaneous analysis of 2 continent-scale monitoring programs. The Christmas Bird Count is an early winter survey, whereas the North American Breeding Bird Survey is conducted in June. Combining information from these surveys permits estimation of seasonal population variance components and improves estimation of long-term population trends. The composite analysis also controls for survey-specific sampling effects. We applied the model to estimation of population change in northern bobwhites (Colinus virginianus). Over the interval 1969–2004, bobwhite populations declined, with trend estimate of −3.56% per year (95% CI = [−3.80%, −3.32%]) in the surveyed portion of their range. Our analysis of seasonal population variance components indicated that northern bobwhite populations changed more in the winter and spring portion of the year than in the summer and fall portion of the year. (JOURNAL OF WILDLIFE MANAGEMENT 72(1):44–51; 2008)  相似文献   

4.
Large-scale habitat use of some declining British birds   总被引:7,自引:1,他引:7  
1. Large-scale habitat use of eight species of breeding birds was considered using data collected across Britain. The species were skylark Alauda arvensis (L.), dunnock Prunella modularis (L.), blackbird Turdus merula (L.), song thrush Turdus philomelos (L.), starling Sturnus vulgaris (L.), linnet Carduelis cannabina (L.), bullfinch Pyrrhula pyrrhula (L.) and reed bunting Emberiza schoeniclus (L.). All are linked by roughly synchronous population declines over the last 25 years in southern Britain (and mostly in farmland landscapes). Discussion is limited to the conservation status of these species.
2. Breeding densities were estimated for broad habitat types and these were used to estimate population sizes within habitat types. Confidence limits on the estimates were derived using a bootstrap procedure.
3. For most species considered, farmland holds a high proportion of their population (in excess of 50% for four species), reflecting the predominance of this land use across Britain. This suggests that sympathetic changes in farming practices are likely to provide the best mechanism for improving the status of these species.
4. Substantial proportions of particular species occur outside farmland, but different species occur in different habitats. A considerable proportion of skylarks occur on upland moor, bullfinches in wooded habitats, and reed buntings in riparian habitats. Conservation of this group of species thus requires appropriate management of the wider countryside, including their main habitats.
5. Habitats associated with human habitation hold > 20% of the British populations of blackbird, song thrush and starling, and considerable numbers of other species. The management of parks, gardens and other 'green space' may have an important impact on their populations and should not be neglected by conservationists.  相似文献   

5.
    
Increasing concerns exist about possible decreased wintering duck abundance and hunting opportunities in the southern regions of the Atlantic and Mississippi flyways of North America. Researchers suggest these decreased abundances of ducks may be related to winter warming and related climatic phenomena. Accordingly, we tested predictions that duck abundance was increasing more at northern than southern latitudes, and that trends were related to average winter temperatures (Dec–Jan). We tested predictions using National Audubon Society Christmas Bird Count (CBC) data collected during December 1969 through January 2019 from 31 states in the United States and 6 Canadian provinces that comprise the Atlantic and Mississippi flyways for 16 species of dabbling and diving ducks (Anatinae). We found support for the prediction that CBC trends in duck abundance vary with latitude, and mean winter temperature explained nearly half the variation in CBC trends for 12 of 16 species. For some species, trends were negative in warmer regions and positive in colder regions. For others, trends were stable or slightly positive in warmer regions but more positive in colder regions. These results provide empirical evidence supporting climate-influenced winter range changes by important game duck species and suggest challenges and opportunities for waterfowl population, habitat, and hunting management in North America and the northern hemisphere. © 2021 The Wildlife Society.  相似文献   

6.
Since it was first detected in 1999, West Nile virus (WNV) quickly spread, becoming the dominant vector-borne disease in North America. Sometimes fatal to humans, WNV is even more widespread among birds, with hundreds of species known to be susceptible to WNV infection in North America alone. However, despite considerable mortality and local declines observed in American crows (Corvus brachyrhynchos), there has been little evidence of a large regional association between WNV susceptibility and population declines of any species. Here we demonstrate a correlation between susceptibility to WNV measured by large-scale testing of dead birds and two indices of overall population change among bird species following the spread of WNV throughout California. This result was due primarily to declines in four species of Corvidae, including all species in this family except common ravens (Corvus corax). Our results support the hypothesis that susceptibility to WNV may have negative population consequences to most corvids on regional levels. They also provide confirmation that dead animal surveillance programs can provide important data indicating populations most likely to suffer detrimental impacts due to WNV.  相似文献   

7.
    
Global climate models predict increases in the frequency and intensity of extreme climatic events such as hurricanes, which may abruptly alter ecological processes in forests and thus affect avian diversity. Developing appropriate conservation measures necessitates identifying patterns of avifauna response to hurricanes. We sought to answer two questions: (1) does avian diversity, measured as community similarity, abundance, and species richness, change in areas affected by hurricane compared with unaffected areas, and (2) what factors are associated with the change(s) in avian diversity? We used North American Breeding Bird Survey data, hurricane track information, and a time series of Landsat images in a repeated measures framework to answer these questions. Our results show a decrease in community similarity in the first posthurricane breeding season for all species as a group, and for species that nest in the midstory and canopy. We also found significant effects of hurricanes on abundance for species that breed in urban and woodland habitats, but not on the richness of any guild. In total, hurricanes produced regional changes in community similarity largely without significant loss of richness or overall avian abundance. We identified several potential mechanisms for these changes in avian diversity, including hurricane‐induced changes in forest habitat and the use of refugia by birds displaced from hurricane‐damaged forests. The prospect of increasing frequency and intensity of hurricanes is not likely to invoke a conservation crisis for birds provided we maintain sufficient forest habitat so that avifauna can respond to hurricanes by shifting to areas of suitable habitat.  相似文献   

8.
    
Aim  Habitat and climate heterogeneity may affect patterns of species diversity from the relatively local scale of communities to the broad biogeographical scale of continents. However, the effects of heterogeneity on species diversity have not been studied as widely at intermediate scales although differences among landscapes in local climate and habitat should maintain beta-diversity.
Location  Bailey ecoregions in the USA.
Methods  Using a geographically extensive dataset on bird distribution and abundance in 35 ecoregions, we tested for the effects of habitat and climate heterogeneity on beta-diversity at two discrete spatial scales: among sample points within landscapes, and among landscapes within ecoregions.
Results  Landscape-level beta-diversity typically accounted for 50% or more of gamma-diversity and was significantly and positively related to habitat heterogeneity (elevational range within an ecoregion) and climate heterogeneity (variation in potential evapotranspiration). Contrary to predictions, point-level beta-diversity was negatively related to habitat and climate heterogeneity, perhaps because heterogeneity constrains alpha-diversity at the landscape level. The geographical spatial separation of landscapes within an ecoregion did not significantly affect beta-diversity at either scale.
Main conclusions  Our results suggest that habitat selection and adaptation to local climate may be the primary processes structuring bird diversity among landscapes within ecoregions, and that dispersal limitation has a lesser role in influencing beta-diversity among landscapes.  相似文献   

9.
    
Generalist species are becoming increasingly dominant in European bird communities. This has been taken as evidence of biotic homogenization, whereby generalist ‘winners’ systematically replace specialist ‘losers’. We test this pattern by relating changes in the average specialization of UK bird communities to changes in the density of species with different degrees of habitat specialization. Although we find the expected decline in community specialization, this was driven by a combination of a strong increase in the density of the most generalist quartile of species and declines in the density of moderately generalist species. Contrary to expectation, specialist species increased slightly over the 18‐year study period but had little effect on the overall trend in community specialization. Our results indicate that the apparent homogenization of UK bird communities is not driven by the replacement of specialists by generalists, but instead by the changing fortunes of generalist species.  相似文献   

10.
11.
    
Road ecology, the study of the impacts of roads and their traffic on wildlife, including birds, is a rapidly growing field, with research showing effects on local avian population densities up to several kilometres from a road. However, in most studies, the effects of roads on the detectability of birds by surveyors are not accounted for. This could be a significant source of error in estimates of the impacts of roads on birds and could also affect other studies of bird populations. Using road density, traffic volume and bird count data from across Great Britain, we assess the relationships between roads and detectability of a range of bird species. Of 51 species analysed, the detectability of 36 was significantly associated with road exposure, in most cases inversely. Across the range of road exposure recorded for each species, the mean positive change in detectability was 52% and the mean negative change was 36%, with the strongest negative associations found in smaller-bodied species and those for which aural cues are more important in detection. These associations between road exposure and detectability could be caused by a reduction in surveyors’ abilities to hear birds or by changes in birds’ behaviour, making them harder or easier to detect. We suggest that future studies of the impacts of roads on populations of birds or other taxa, and other studies using survey data from road-exposed areas, should account for the potential impacts of roads on detectability.  相似文献   

12.
13.
14.
A long-standing aim of ecologists is to understand the processes involved in regulating populations. One such mechanism is the buffer effect, where lower quality habitats are increasingly used as a species reaches higher population densities, with a resultant average reduction in fecundity and survival limiting population growth. Although the buffer effect has been demonstrated in populations of a number of species, a test of its importance in influencing population growth rates of multiple species across large spatial scales is lacking. Here, we use habitat-specific population trends for 85 bird species from long-term national monitoring data (the UK Breeding Bird Survey) to examine its generality. We find that both patterns of population change and changes in habitat preference are consistent with the predictions of the buffer effect, providing support for its widespread operation.  相似文献   

15.
  总被引:4,自引:0,他引:4  
Royle JA 《Biometrics》2004,60(1):108-115
Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, I describe a class of models (N-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, N, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for N. Carroll and Lombard (1985, Journal of American Statistical Association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on N that is exploited by the N-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the N-mixture estimator compared to the Caroll and Lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.  相似文献   

16.
    
While rare species are vulnerable to global change, large declines in common species (i.e., those with large population sizes, large geographic distributions, and/or that are habitat generalists) also are of conservation concern. Understanding if and how commonness mediates species' responses to global change, including land cover change, can help guide conservation strategies. We explored avian population responses to land cover change along a gradient from common to rare species using avian data from the North American Breeding Bird Survey (BBS) and land cover data from the National Land Cover Database for the conterminous United States. Specifically, we used generalized linear mixed effects models to ask if species' commonness affected the relationship between land cover and counts, using the initial amount of and change in land cover surrounding each North American BBS route from 2001 to 2016. We quantified species' commonness as a continuous metric at the national scale using the logarithm (base 10) of each species' total count across all routes in the conterminous United States in 2001. For our focal 15-year period, we found that higher proportions of initial natural land cover favored (i.e., were correlated with higher) counts of rare but not common species. We also found that commonness mediated how change in human land cover, but not natural land cover, was associated with species' counts at the end of the study period. Increases in developed lands did not favor counts of any species. Increases in agriculture and declines in pasture favored counts of common but not rare species. Our findings show a signal of commonness in how species respond to a major dimension of global change. Evaluating how and why commonness mediates species' responses to land cover change can help managers design conservation portfolios that sustain the spectrum of common to rare species.  相似文献   

17.
    
ABSTRACT Mourning doves (Zenaida macroura) are surveyed in North America with a Call-Count Survey (CCS) and the North American Breeding Bird Survey (BBS). Analyses in recent years have identified inconsistencies in results between surveys, and a need exists to analyze the surveys using modern methods and examine possible causes of differences in survey results. Call-Count Survey observers collect separate information on number of doves heard and number of doves seen during counting, whereas BBS observers record one index containing all doves observed. We used hierarchical log-linear models to estimate trend and annual indices of abundance for 1966–2007 from BBS data, CCS-heard data, and CCS-seen data. Trend estimates from analyses provided inconsistent results for several states and for eastern and central dove-management units. We examined differential effects of change in land use and noise-related disturbance on the CCS indices. Changes in noise-related disturbance along CCS routes had a larger influence on the heard index than on the seen index, but association analyses among states of changes in temperature and of amounts of developed land suggest that CCS indices are differentially influenced by changes in these environmental features. Our hierarchical model should be used to estimate population change from dove surveys, because it provides an efficient framework for estimating population trends from dove indices while controlling for environmental features that differentially influence the indices.  相似文献   

18.
    
ABSTRACT The North American Breeding Bird Survey (BBS) is used extensively to make inferences about populations of many North American bird species and is increasingly being used for avian conservation planning. How well BBS routes represent the landscape is poorly known, even though accuracy of representation could significantly affect inferences made from BBS data. We used digital landcover data to examine how well landcover within 400-m buffers around BBS routes represented the surrounding landscape (the route neighborhood) for 52 routes in the Prairie Pothole Region of North Dakota and South Dakota. Differences in composition between landcover along BBS routes and the route neighborhood were not statistically significant for upland cover classes. The area of temporary and seasonal wetland basins was accurately represented by BBS routes in our study area, but the area of semipermanent and permanent wetland basins was significantly underrepresented along BBS routes. Number of wetland basins and upland patches was higher along routes. Area of urban, forest, and hay landcover classes was higher along routes, although differences were not statistically significant. Amount of bias in landcover representation was negatively correlated with the proportion of each landcover type in the study area, but bias was not correlated with area of the route neighborhoods. Differences between landcover along BBS routes and the route neighborhood were primarily attributable to increased anthropogenic activity along roads and siting of roads away from relatively large, deep water bodies. Our results suggest that inferences made from BBS data in our study region are likely biased for species that are associated with deeper-water habitats or are strongly influenced by landscape fragmentation. Inferences made from BBS data for species associated with uplands or shallow wetlands are less likely to be biased because of differences in landcover composition.  相似文献   

19.
Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigour or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989–2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation‐ and greenness‐based metrics by abundance and species richness of the avian community overall, and of four behavioural guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32‐week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implication of a more climatically variable future.  相似文献   

20.
Abstract. Avian communities are often used by ecologists as indicators of environmental decline over large spatial areas, because of the ease with which birds can be monitored by nonprofessionals and the availability of continent‐wide breeding bird data. The influence of scale on the relationship between bird diversity and the characteristics of the landscape, which can serve as proxies for decline, is receiving greater attention but is still not well understood. We combined data from the Breeding Bird Survey with landscape characteristics derived from the National Land Classification Data for Ohio, USA, to determine the effects of landscape extent on relationships between birds and landscape characteristics. These relationships were determined through previous work to be correlated with avian richness and diversity. We created areas of varying sizes using buffers around each of 58 routes, and calculated diversity for several groups of birds: all birds, five habitat guilds, and three migration guilds. The landscape extent over which landscape characteristics were considered affected the relationship between these characteristics and bird richness and diversity overall, as well as richness and diversity for several of the habitat and migratory guilds. Diversity of woodland birds, Neotropical migrants, and richness of short‐distance migrants were best explained by the landscape characteristics examined here, possibly due to a less homogeneous collection of species in the other guild groups. These results suggest that more attention is required in selecting the appropriate scale when using landscape characteristics to predict or manage avian communities, as some characteristics may be more useful for management activities over small areas versus efforts over larger areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号