首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyanobacteria are widespread photosynthetic microorganisms among which some are able to fix atmospheric nitrogen. We investigated the impact of indigenous cyanobacteria strains (Nostoc) inoculation on physical characteristics of poorly aggregated soils from Guquka (Eastern Cape, South Africa). The soil aggregates (3–5 mm) were arranged into a layer of 10–20 mm thick, and sprayed with cyanobacteria solution. Subsequently the inoculated and un-inoculated samples were incubated (30°C, 80% humidity, continuous illumination at 100 μmol m−2 s−1). Their micromorphological characteristics and aggregate stability were investigated, after 1, 2, 3, 4 and 6 weeks of incubation, by using high resolution Cryo-SEM and aggregate breakdown tests. Micromorphological investigations revealed that the surface of un-inoculated samples remained uncovered, while the inoculated samples were partially covered by cyanobacteria material after one week of incubation. A dense superficial network of cyanobacterial filaments and extracellular polymer secretions (EPS) covered their surface after 4 and 6 weeks of incubation. Organo-mineral aggregates comprising cyanobacterial filaments and EPS were observed after 6 weeks of incubation. The results of aggregate breakdown tests showed no significant difference between un-inoculated samples after 1, 2, 3, 4 or 6 weeks, while they revealed improvement of aggregate stability for inoculated samples. The improvement of aggregate stability appeared in a short while following inoculation and increased gradually with time and cyanobacteria growth. The increase in aggregate stability is likely related to the changes induced in micromorphological characteristics by cyanobacterial filaments and EPS. It reflects the effect of coating, enmeshment, binding and gluing of aggregates and isolated mineral particles by cyanobacteria material. Our study presents new data demonstrating the improvement of soil physical quality in a few weeks after cyanobacteria inoculation. The interaction of the inocula and other biotic components is worthy of study before field application of cyanobacteria.  相似文献   

2.
During three rice-growing seasons in Uruguay, field experiments were conducted to study the contribution of cyanobacterial inoculation and chemical N fertilization to rice production. Neither grain yield nor fertilizer recovery by the plant were affected by inoculation with native cyanobacterial isolates. A low fertilizer use efficiency (around 20%) was observed when labelled (NH4)2SO4 was applied at sowing. Recovery of applied 15N by the soil–plant system was 50%. Inoculation did not modify 15N uptake by the plant when the fertilizer was three-split applied either. The total N-fertilizer recovery was higher when the fertilizer was split than when applied in a single dose. Plant N-fertilizer uptake was higher when the fertilizer was applied at tillering. Uptake of 15N from cyanobacteria by rice was studied in a greenhouse pots experiment without chemical nitrogen addition. Recovery of 15N from labelled cyanobacteria by rice in greenhouse growth conditions was similar to that of partial recovery of (NH4)2SO4 applied at sowing in the field. Cyanobacterial N mineralization under controlled conditions was fast as cyanobacterial N was detected in plants after 25 days. Moreover 40 days after inoculation non-planted and inoculated soil had more inorganic N than the non-inoculated one.  相似文献   

3.
Biological soil crusts are very sensitive to human-induced disturbances and are in a degraded state in many areas throughout their range. Given their importance in the functioning of arid and semiarid ecosystems, restoring these crusts may contribute to the recovery of ecosystem functionality in degraded areas. We conducted a factorial microcosm experiment to evaluate the effects of inoculation type (discrete fragments vs slurry), fertilization (control vs addition of composted sewage sludge), and watering frequency (two vs five times per week) on the cyanobacterial composition, nitrogen fixation, chlorophyll content, and net CO2 exchange rate of biological soil crusts inoculated on a semiarid degraded soil from SE Spain. Six months after the inoculation, the highest rates of nitrogen fixation and chlorophyll a content were found when the biological crusts were inoculated as slurry, composted sewage sludge was added, and the microcosms were watered five times per week. Net CO2 exchange rate increased when biological crusts were inoculated as slurry and the microcosms were watered five times per week. Denaturing gradient gel electrophoresis fingerprints and phylogenetic analyses indicated that most of the cyanobacterial species already present in the inoculated crust had the capability to spread and colonize the surface of the surrounding soil. These analyses showed that cyanobacterial communities were less diverse when the microcosms were watered five times per week, and that watering frequency (followed in importance by the addition of composted sewage sludge and inoculation type) was the treatment that most strongly influenced their composition. Our results suggest that the inoculation of biological soil crusts in the form of slurry combined with the addition of composted sewage sludge could be a suitable technique to accelerate the recovery of the composition and functioning of biological soil crusts in drylands.  相似文献   

4.
In most drylands, biological soil crusts (biocrusts), an assemblage of lichens, bryophytes, fungi, green algae, and cyanobacteria, are critical to healthy ecosystem function. However, they are extremely sensitive to disturbance and attempts to facilitate their recovery have had variable success. In this study, we applied soil amendments designed to improve soil surface stability and accelerate biocrust recovery on an area disturbed by oil/gas exploration vehicles. Treatments included: (1) control (one time water only); (2) biocrust‐only: biocrust inoculum + nutrients in water; (3) polyacrylamide gels (which are known to stabilize soils) + biocrust inoculum + nutrients in water; (4) gypsum + biocrust inoculum + nutrients in water; and (5) saline (NaCl) solution + biocrust inoculum + nutrients in water. Only the NaCl treatment showed any effects on soil properties and these were only short term. These effects included an increase in soil strength and a reduction in soil aggregate stability, unsaturated hydraulic conductivity (Kh), and cyanobacterial biomass. The inoculated biocrust material failed to develop and even after 10 years, there was only a very low natural recolonization of the plots. These results show that inoculating soils or applying these levels of soil amendments does not guarantee recovery of soil stability or biocrust, and that some sites are unlikely to recover without assistance. Thus, there is a need for more research into ways to enhance soil stability and identify the factors limiting biocrust establishment.  相似文献   

5.
6.
Human activities are causing unprecedented disturbances in terrestrial ecosystems across the globe. To reverse soil deterioration in drylands, a promising tool is the ex situ cultivation of biological soil crusts, topsoil geobiological assemblages that provide key ecosystem services. One approach is to transplant biocrusts cultivated in greenhouse nursery facilities into degraded sites to accelerate recovery. Lichen‐ and moss‐dominated biocrusts have been successfully grown using a common, sandy soil. We compared the use of a common, sandy soil versus native soils as a substrate for the cultivation of cyanobacteria‐dominated biocrusts. In greenhouse experiments, we inoculated natural biocrusts collected from three Southwestern USA dryland sites on to either a common, sandy soil or on their respective native soils. The common substrate resulted in a moderate enhancement of growth yield relative to native soils. While changes in bacterial phyla composition remained low in all cases, the use of a common substrate introduced larger shifts in cyanobacterial community composition than did using native soils. The shift increase attributable to the common, sandy soil was not catastrophic—and typical cyanobacteria of field biocrusts remained dominant—unless textural differences between the common substrate and native soils were marked. Because collecting native soils adds a significant effort to growing cyanobacterial biocrusts in greenhouses for restoration purposes, the use of a common, sandy substrate may be considered by land managers as a standard practice. But we recommend to regularly monitor the composition of the grown biomass.  相似文献   

7.

Background and aims

This study investigated the effect of cyanobacterial inoculants on salt tolerance in wheat.

Methods

Unicyanobacterial crusts of Nostoc, Leptolyngbya and Microcoleus were established in sand pots. Salt stress was targeted at 6 and 13 dS m?1, corresponding to the wheat salt tolerance and 50 % yield reduction thresholds, respectively. Germinated wheat seeds were planted and grown for 14 (0 and 6 dS m?1) and 21 (13 dS m?1) days by which time seedlings had five emergent leaves. The effects of cyanobacterial inoculation and salinity on wheat growth were quantified using chlorophyll fluorescence, inductively coupled plasma-optical emission spectrometry and biomass measurements.

Results

Chlorophyll fluorescence was negatively affected by soil salinity and no change was observed in inoculated wheat. Effective photochemical efficiency correlated with a large range of plant nutrient concentrations primarily in plant roots. Inoculation negatively affected wheat biomass and nutrient concentrations at all salinities, though the effects were fewer as salinity increased.

Conclusions

The most likely explanation of these results is the sorption of nutrients to cyanobacterial extracellular polymeric substances, making them unavailable for plant uptake. These results suggest that cyanobacterial inoculation may not be appropriate for establishing wheat in saline soils but that cyanobacteria could be very useful for stabilising soils.  相似文献   

8.
Root colonization with arbuscular mycorrhizal fungi (AMF) enhances plant resistance particularly against soil‐borne pathogenic fungi. In this study, mycorrhizal inoculation with Glomus mosseae (Gm) significantly alleviated tomato mould disease caused by the air‐borne fungal pathogen, Cladosporium fulvum (Cf). The disease index (DI) in local leaves (receiving pathogen inoculation) and systemic leaves (just above the local leaf without pathogen inoculation) was 36.4% and 11.7% in mycorrhizal plants, respectively, whereas DI was 59.6% and 36.4% in the corresponding leaves of AMF non‐inoculated plants, after 50 days of Gm inoculation, corresponding to 15 days after Cf inoculation by leaf infiltration. Foliar spray inoculation with Cf also revealed that AMF pre‐inoculated plants had a higher resistance against subsequent pathogen infection, where the DI was 41.3% in mycorrhizal plants vs. 64.4% in AMF non‐inoculated plants. AMF‐inoculated plants showed significantly higher fresh and dry weight than non‐inoculated plants under both control (without pathogen) and pathogen treatments. AMF‐inoculated plants exhibited significant increases in activities of superoxide dismutase and peroxidase, along with decreases in levels of H2O2 and malondialdehyde, compared with non‐inoculated plants after pathogen inoculation. AMF inoculation led to increases in total chlorophyll contents and net photosynthesis rate as compared with non‐inoculated plants under control and pathogen infection. Pathogen infection on AMF non‐inoculated plants led to decreases in chlorophyll fluorescence parameters. However, pathogen infection did not affect these parameters in mycorrhizal plants. Taken together, these results indicate that AMF colonization may play an important role in plant resistance against air‐borne pathogen infection by maintaining redox poise and photosynthetic activity.  相似文献   

9.
Zimpfer  J. F.  Kaelke  C. M.  Smyth  C. A.  Hahn  D.  Dawson  J. O. 《Plant and Soil》2003,254(1):1-10
The effects of soil biota, Frankia inoculation and tissue amendment on nodulation capacity of a soil was investigated in a factorial study using bulked soil from beneath a Casuarina cunninghamiana tree and bioassays with C. cunninghamiana seedlings as capture plants. Nodulation capacities were determined from soils incubated in sterile jars at 21 °C for 1, 7, and 28 days, after receiving all combinations of the following treatments: ± steam pasteurization, ± inoculation with Frankia isolate CjI82001, and ± amendment with different concentrations of Casuarina cladode extracts. Soil respiration within sealed containers was determined periodically during the incubation period as a measure of overall microbial activity. Soil respiration, and thus overall microbial activity, was positively correlated with increasing concentrations of Casuarina cladode extracts. The nodulation capacity of soils inoculated with Frankia strain Cj82001 decreased over time, while those of unpasteurized soils without inoculation either increased or remained unaffected. The mean nodulation capacity of unpasteurized soil inoculated with Frankia CjI82001 was two to three times greater than the sum of values for unpasteurized and inoculated pasteurized soils. Our results suggest a positive synergism between soil biota as a whole and Frankia inoculum with respect to host infection.  相似文献   

10.
Summary Laboratory experiments were conducted to determine the effects of crop residues, without and withPenicillium urticae Bainer inoculation, on growth of wheat seedlings in soil. Fifty grams of Sharpsburg silty clay loam soil, containing 1% by weight of incorporated alfalfa, sorghum and corn stover residue, were placed in petri dishes, autoclaved, wetted to 40% moisture, and incubated at 24°C. for periods of 2, 3, and 4 weeks. One-half of the petri dishes were inoculated withP. urticae. Germination and seedling-shoot measurements were taken after 7 days of growth.The results of this study showed that (1) inoculation of soil generally reduced seedling height regardless of the residue treatment; (2) inoculation of soil containing corn and sorghum residues resulted in greater tissue production but reduced height of seedlings as compared to non-inoculated soils; and (3) in the absence of residues, the inoculated control soils were a better growth medium for wheat seedlings than were the non-inoculated control soils. In addition, alfalfa residues, especially in the presence ofP. urticae, were strongly inhibitory to the wheat seedlings, causing curling and reduced wheat-seedling root growth.Joint contribution from University of Nebraska and Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, and Nebraska Agricultural Experiment Station, Lincoln, Nebraska, cooperating. Published with the approval of the Director as Paper No. 1242, Journal Series, Nebraska Agricultural Experiment Station.  相似文献   

11.
The soil bacterial community and some inoculated bacteria were monitored to assess the microbial responses to prescribed fire in their microcosm. An acridine orange direct count of the bacteria in the unburned control soil were maintained at a relatively stable level (2.0 approximately 2.7 x 10(9) cells/g(-1).soil) during the 180 day study period. The number of bacteria in the surface soil was decreased by fire, but was restored after 3 months. Inoculation of some bacteria increased the number of inoculated bacteria several times and these elevated levels lasted several months. The ratios of eubacteria detected by a fluorescent in situ hybridization (FISH) method to direct bacterial count were in the range of 60 approximately 80% during the study period, with the exception of some lower values at the beginning, but there were no definite differences between the burned and unburned soils or the inoculated and uninoculated soils. In the unburned control soil, the ratios of alpha-, beta- and gamma-subgroups of the proteobacteria, Cytophaga-Flavobacterium and other eubacteria groups to that of the entire eubacteria were 13.7, 31.7, 17.1, 16.8 and 20.8%, respectively, at time 0. The overall change on the patterns of the ratios of the 5 subgroups of eubacteria in the uninoculated burned and inoculated soils were similar to those of the unburned control soil, with the exception of some minor variations during the initial period. The proportions of each group of eubacteria became similar in the different microcosms after 6 months, which may indicate the recovery of the original soil microbial community structure after fire or the inoculation of some bacteria. The populations of Azotobacter vinelandii, Bacillus megaterium and Pseudomonas fluorescens, which had been inoculated to enhance the microbial activities, and monitored by FISH method, showed similar changes in the microcosms, and maintained high levels for several months.  相似文献   

12.
Biocrusts provide numerous ecological functions in drylands. Recovering biocrusts via cyanobacterial inoculation recently gathered interest for ecological restoration, yet it still lacks long-term experiments to unravel biocrust community dynamics. To examine how cyanobacterial inoculants influenced local microbial community and biocrust development, we observed a 2 km2 (Qubqi Desert, China) inoculation experiment after 10 and 15 years, following biocrust formation. Our results revealed that biocrust development was in line with ecological regime shift, providing evidence for biocrust community succession, from cyanobacteria- to moss-dominated types. Associated with biocrust development, microbial communities differed significantly with less specialists compared to shifting sands. Cyanobacterial community analysis showed that Microcoleus vaginatus and Scytonema javanicum are an ideal inoculating model, as they were still dominating the community after 15 years since inoculation, while other nitrogen-fixing cyanobacteria occurred profusely with biocrust development. Biocrust community composition combined with thickness, Chl-a and exopolysaccharide measurements revealed the large variation of cyanobacterial ecological functions along biocrust development, suggesting a main function shift: from carbon fixation associated with exopolysaccharide secretion in bare sandy soils to nitrogen fixation in developed biocrusts. This large-scale field study verifies that cyanobacterial inoculation accelerates biocrust development and forwards succession, shaping the biocrust community composition over a long time.  相似文献   

13.
Biological soil crusts (biocrusts) are a central component of dryland ecosystems. However, they are highly vulnerable to disturbance and natural recovery may be slow. Therefore, finding ways to enhance the reestablishment of biocrusts after disturbance has been of great interest to researchers. This article provides a review of the laboratory cultivation and field inoculations of biocrust materials in China (mostly published in Chinese). Larger filamentous cyanobacteria (e.g. Microcoleus) are relatively easy, although slow, to grow in culture compared to other biocrust components. Thus, most researchers have focused their efforts on the cyanobacteria and a few species of mosses that are also easily grown but at smaller scale. For all the studies, a small amount of biocrust material was collected and its biomass enhanced under controlled conditions. However, the enhancement was done using various methods and techniques in different regions. These materials were then applied to disturbed field sites, again with various methods. Results show that keeping the inoculated soil surface wet for some time period after inoculation was crucial for restoration success. Cyanobacterial establishment was improved by installing automatic sprinkling using micro‐irrigation techniques and/or physical structures that reduced sediment moving onto the inoculated area. Experimental applications in China showed that cyanobacteria can be successfully inoculated at a large scale (hundreds of ha). Moss inoculation, on the other hand, was only accomplished at a small scale (several m2). To assess whether biocrust restoration can enhance the establishment of a self‐supporting ecosystem, further research is needed on how inoculation affects vegetation diversity and structure and ecological processes.  相似文献   

14.
Restoration managers inoculate microorganisms to enhance soil function and improve restoration success, but the efficacy of these inoculations in real-world conditions is still unclear. We conducted a field experiment to test whether applying extruded seed pellets inoculated with native microbes affected soil properties related to ecosystem function in severely degraded mine soil. We found that inoculating with bacteria did not affect soil carbon, metabolic quotient (a measure of microbial stress), or basal respiration, but increased soil nitrogen by 75%, substrate-induced respiration by 147% and reduced carbon-to-nitrogen ratio by 44% compared to the control. This suggests that the bacteria inoculant contained free-living N fixers that increased the soil N content. Thus, inoculating with bacteria could supplement nitrogen fertilizers in degraded soils during soil restoration. However, we found that inoculating with a mix of bacteria and cyanobacteria did not affect any of the soil properties. This finding is counter to results in laboratory studies, suggesting that field tests are critical for understanding real-world outcomes of microbial inoculation. Finally, we found that soil microbial composition was changed by the inoculation with a mix of bacteria and cyanobacteria. None of the treatments significantly changed the diversity of soil microbial communities. Our data suggest that microbial inoculation could improve some aspects of ecosystem function and thus provide beneficial effects that might facilitate restoration of degraded sites.  相似文献   

15.
I. Louis  G. Lim 《Plant and Soil》1988,112(1):37-43
Soybean (Glycine max cv. Mikiwashima) seedlings were inoculated with two tropical isolates of the vesicular-arbuscular mycorrhizal fungusGlomus clarum (Gc); isolateGcA was isolated from soils of low phosphate (P) and isolateGcB from soils of high P availability. In soil with low P,GcA was more efficient in increasing growth, nodulation and nitrogenase activity ofG. max thanGcB. Upon contact with the root surface, pre-infection hyphae ofGcA penetrated the root directly and rapidly colonised the cortical cells, while those ofGcB grew extensively on theroot surface with little host penetration. Mycorrhizal colonisation was higher in roots inoculated withGcA. Dual inoculation with the two isolates did not increase the effect of the single inoculation withGcA. In soils of high P status, both isolates formed pre-infection hyphae with few entry ooints and percentage mycorrhizal root colonisation was consequently low. The variation in efficacy of the isolates emphasizes the significance of evaluating host specificity when selecting efficient VA mycorrhizae strains for field studies.  相似文献   

16.
The potential for aerobic mineralization of [U-14C]dibenzo-p-dioxin (DD) was investigated in samples of three different agricultural soils already contaminated with polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) by industrial activities. The influence of amendments, i.e. wheat straw and compost, and of soil treatment by inoculation with lignolytic fungi, grown on wheat straw substrate, was tested. All the soils tested contained an indigenous DD-mineralizing microflora. The soil characterized by the highest organic matter content and the highest content of soil microbial biomass displayed the best DD mineralization of 36.6% within 70 days, compared with the two organic-matter-poor soils with an endogenous DD mineralization of 19.5% and 23.3% respectively. Amendments with compost increased DD mineralization up to 28% in both soils with low organic matter and microbial biomass content, but did not affect mineralization in the organic-matter-rich soil. Addition of wheat straw had no constant influence on DD mineralization in the soils tested. The best DD mineralization resulted from inoculation with lignolytic white-rot fungi (Phanerochaete chrysosporium, Pleurotus sp. Florida, Dichomitus squalens) and with an unidentified lignolytic fungus, which was isolated originally from a long-term PCDD/F-contaminated soil. A mineralization of up to 50% within 70 days was reached by this treatment. The influence of inoculated fungi on mineralization differed between the soils investigated. Received: 14 April 1997 / Received revision: 24 June 1997 / Accepted: 29 June 1997  相似文献   

17.
The individual, concomitant and sequential inoculation of second stage juveniles (at 2000 J2/kg soil) of Meloidogyne incognita and Rhizoctonia solani (at 2 g mycelial mat/kg soil) showed significant reduction in plant growth parameters viz. plant length, fresh weight and dry weight as compared to control. The greatest reduction in plant growth parameters was recorded in the plants simultaneously inoculated with M. incognita and R. solani followed by sequential and individual inoculation. In sequential inoculation, plant inoculated with M. incognita 15 days prior to R. solani shows more reduction in comparison to plant inoculated with R. solani 15 days prior to M. incognita. Moreover, the multiplication of nematode and number of galls/root system were significantly reduced in concomitant and sequential inoculation as compared to individual inoculation, whereas the intensity of root-rot/root system caused by R. solani was increased in the presence of root-knot nematode M. incognita as compared to when R. solani was inoculated individually.  相似文献   

18.
Soil microbial communities have a profound influence on soil chemical processes and subsequently influence tree nutrition and growth. This study examined how the addition of a commercial inoculum or forest‐collected soils influenced nitrogen (N) and phosphorus (P) dynamics, soil microbial community structure, and growth in Liriodendron tulipifera and Prunus serotina tree saplings. Inoculation method was an important determinant of arbuscular mycorrhizal fungi (AMF) community structure in both species and altered soil N dynamics in Prunus and soil P dynamics in Liriodendron. Prunus saplings receiving whole forest soil transfers had a higher rhizosphere soil carbon/nitrogen ratio and ammonia content at the end of the first growing season when compared to unmanipulated control saplings. Inoculation with whole forest soil transfers resulted in increased inorganic phosphorus in Liriodendron rhizosphere soils. The number of AMF terminal restriction fragments was significantly greater in rhizosphere soils of Liriodendron saplings inoculated with whole forest soil transfers and Prunus saplings receiving either inoculum source than control saplings. Forest soil inoculation also increased AMF colonization and suppressed stem elongation in Liriodendron after 16 months; conversely, Prunus AMF colonization was unchanged and stem elongation was significantly greater when saplings were inoculated with whole forest soil transfers. Longer term monitoring of tree response to inoculation will be essential to assess whether early costs of AMF colonization may provide long‐term benefits. This study provides insight into how practitioners can use microbial inoculation to alter AMF community structure and functioning, subsequently influencing tree growth and nutrient cycling during the restoration of degraded lands.  相似文献   

19.
The survival of Azospirillum brasilense Cd and Sp-245 in the rhizosphere of wheat and tomato plants and in 23 types of plant-free sterilized soils obtained from a wide range of environments in Israel and Mexico was evaluated. Large numbers of A. brasilense cells were detected in all the rhizospheres tested, regardless of soil type, bacterial strain, the origin of the soil, or the amount of rainfall each soil type received prior to sampling. Survival of A. brasilense in soils without plants differed from that in the rhizosphere and was mainly related to the geographical origin of the soil. In Israeli soils from arid, semiarid, or mountain regions, viability of A. brasilense rapidly declined or populations completely disappeared below detectable levels within 35 days after inoculation. In contrast, populations in the arid soils of Baja California Sur, Mexico, remained stable or even increased during the 45-day period after inoculation. In soils from Central Mexico, viability slowly decreased with time. In all soils, percentages of clay, nitrogen, organic matter, and water-holding capacity were positively correlated with bacterial viability. High percentages of CaCO(inf3) and fine or rough sand had a highly negative effect on viability. The percentage of silt, pH, the percentage of phosphorus or potassium, electrical conductivity, and C/N ratio had no apparent effect on bacterial viability in the soil. Fifteen days after removal of inoculated plants, the remaining bacterial population in the three soil types tested began to decline sharply, reaching undetectable levels 90 days after inoculation. After plant removal, percolating the soils with water almost eliminated the A. brasilense population. Viability of A. brasilense in two artificial soils containing the same major soil components as the natural soils from Israel did was almost identical to that in the natural soils. We conclude that A. brasilense is a rhizosphere colonizer which survives poorly in most soils for prolonged periods of time; that outside the rhizosphere, seven abiotic parameters control the survival of this bacterium in the soil; and that disturbance of the soil (percolation with water or plant removal) directly and rapidly affects the population levels.  相似文献   

20.
To examine the effects of microbial populations and external phosphorus supply of two Philippine soils on mycorrhizal formation, Eucalyptus urophylla seedlings were inoculated with two Pisolithus isolates and grown in fumigated, reinfested and unfumigated soil fertilized with four rates of phosphorus. The Pisolithus isolates used were collected from under eucalypts in Australia and in the Philippines. Soils were infertile acid silty loams collected from field sites in Pangasinan, Luzon and Surigao, Mindanao.Significant interaction was observed between inoculation, soil fumigation and phosphorus supply on mycorrhizal formation by the Australian isolate in Surigao soil but not in Pangasinan soil. Soil fumigation enhanced mycorrhizal formation by the Australian isolate but did not affect root colonization by the Philippine isolate. Root colonization by the Australian isolate was highest in the reinfested soil while for the Philippine isolate it was highest in the unfumigated soil. The Australian isolate was more effective than the Philippine isolate in promoting growth and P uptake of E. urophylla seedlings in both soils. Total dry weight and P uptake of E. urophylla seedlings inoculated with the Australian isolate were maximum in fumigated and in the reinfested Pangasinan and Surigao soils supplied with 8 mg P kg-1 soil. In the unfumigated soil, growth of seedlings inoculated with the Australian isolate was significantly reduced. Seedlings inoculated with the Philippine isolate had the largest dry weights and P contents in unfumigated Pangasinan and Surigao soils supplied with 8 mg P kg-1 soil.These results indicate that the performance of the Australian Pisolithus isolate was markedly affected by biological factors in unfumigated soil. Thus, its potential use in the Philippines needs to be thoroughly tested in a variety of unfumigated soils before its widespread use in any inoculation programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号