首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chronic pancreatitis (CP), characterized by pancreatic fibrosis, is a recurrent, progressive and irreversible disease. Activation of the pancreatic stellate cells (PSCs) is considered a core event in pancreatic fibrosis. In this study, we investigated the role of hydrogen peroxide‐inducible clone‐5 (Hic‐5) in CP. Analysis of the human pancreatic tissue samples revealed that Hic‐5 was overexpressed in patients with CP and was extremely low in healthy pancreas. Hic‐5 was significant up‐regulated in the activated primary PSCs independently from transforming growth factor beta stimulation. CP induced by cerulein injection was ameliorated in Hic‐5 knockout (KO) mice, as shown by staining of tissue level. Simultaneously, the activation ability of the primary PSCs from Hic‐5 KO mice was significantly attenuated. We also found that the Hic‐5 up‐regulation by cerulein activated the NF‐κB (p65)/IL‐6 signalling pathway and regulated the downstream extracellular matrix (ECM) genes such as α‐SMA and Col1a1. Therefore, we determined whether suppressing NF‐κB/p65 alleviated CP by treating mice with the NF‐κB/p65 inhibitor triptolide in the cerulein‐induced CP model and found that pancreatic fibrosis was alleviated by NF‐κB/p65 inhibition. These findings provide evidence for Hic‐5 as a therapeutic target that plays a crucial role in regulating PSCs activation and pancreatic fibrosis.  相似文献   

2.
Tubulointerstitial fibrosis plays an important role in end‐stage renal failure, and there are only limited therapeutic options available to preserve organ function. In the present study, we identified that nodakenin, a coumarin isolated from the roots of Angelicae gigas, functions effectively against unilateral ureteral obstruction (UUO)‐induced fibrosis via down‐regulating Snail1 expression. We established UUO‐induced renal fibrosis in mice and then administered with nodakenin orally ata a dose of 1 and 10 mg/kg. The in‐vivo results indicated that nodakenin protected obstructive nephropathy through its anti‐inflammatory and anti‐fibrotic properties. Nodakenin prevented the infiltration of inflammatory cells, alleviated the levels of pro‐inflammatory cytokines, reduced the polarization of macrophages and down‐regulating the aberrant deposition of extracellular matrix at the site of injury. Of note, nodakenin dramatically impeded Smad3, NF‐κB p65 phosphorylation and Snail1 expression. In line with in vivo studies, nodakenin suppressed the expression of Snail1, Smad3 phosphorylation and fibrogenesis in TGF‐β1‐treated renal epithelial cells in‐vitro. Furthermore, we found that the effect of nodaknin against fibrosis was reversed in Snail1 overexpressing cells, whereas nodakenin could not further reduce expression of fibrogenesis in Snail1 silenced cells, suggesting that nodaknein may function through a Snail1‐dependent manner. Collectively, this study reveal a critical role of nodakenin in the cure of renal fibrosis.  相似文献   

3.
Macrophages maintain a dynamic balance in physiology. Various known or unknown microenvironmental signals influence the polarization, activation and death of macrophages, which creates an imbalance that leads to disease. Rheumatoid arthritis (RA) is characterized by the massive infiltration of a variety of chronic inflammatory cells in synovia. Abundant activated macrophages found in RA synovia are an early hallmark of RA, and the number of these macrophages can be decreased after effective treatment. In RA, the proportion of M1 (pro‐inflammatory macrophages) is higher than that of M2 (anti‐inflammatory macrophages). The increased pro‐inflammatory ability of macrophages is related to their excessive activation and proliferation as well as an enhanced anti‐apoptosis ability. At present, there are no clinical therapies specific to macrophages in RA. Understanding the mechanisms and functional consequences of the heterogeneity of macrophages will aid in confirming their potential role in inflammation development. This review will outline RA‐related macrophage properties (focus on polarization, metabolism and apoptosis) as well as the origin of macrophages. The molecular mechanisms that drive macrophage properties also be elucidated to identify novel therapeutic targets for RA and other autoimmune disease.  相似文献   

4.
Following myocardial infarction, tissue repair is mediated by the recruitment of monocytes and their subsequent differentiation into macrophages. Recent findings have revealed the dynamic changes in the presence of polarized macrophages with pro‐inflammatory (M1) and anti‐inflammatory (M2) properties during the early (acute) and late (chronic) stages of cardiac ischemia. Mesenchymal stem cells (MSCs) delivered into the injured myocardium as reparative cells are subjected to the effects of polarized macrophages and the inflammatory milieu. The present study investigated how cytokines and polarized macrophages associated with pro‐inflammatory (M1) and anti‐inflammatory (M2) responses affect the survival of MSCs. Human MSCs were studied using an in vitro platform with individual and combined M1 and M2 cytokines: IL‐1β, IL‐6, TNF‐α, and IFN‐γ (for M1), and IL‐10, TGF‐β1, TGF‐β3, and VEGF (for M2). In addition, polarization molecules (M1: LPS and IFN‐γ; M2: IL‐4 and IL‐13) and common chemokines (SDF‐1 and MCP‐1) found during inflammation were also studied. Indirect and direct co‐cultures were conducted using M1 and M2 polarized human THP‐1 monocytes. M2 macrophages and their associated cytokines supported the growth of hMSCs, while M1 macrophages and their associated cytokines inhibited the growth of hMSCs in vitro under certain conditions. These data imply that an anti‐inflammatory (M2) environment is more accommodating to the therapeutic hMSCs than a pro‐inflammatory (M1) environment at specific concentrations. J. Cell. Biochem. 114: 220–229, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Plastic polarization of macrophage is involved in tumorigenesis. M1‐polarized macrophage mediates rapid inflammation, entity clearance and may also cause inflammation‐induced mutagenesis. M2‐polarized macrophage inhibits rapid inflammation but can promote tumour aggravation. ω‐3 long‐chain polyunsaturated fatty acid (PUFA)‐derived metabolites show a strong anti‐inflammatory effect because they can skew macrophage polarization from M1 to M2. However, their role in tumour promotive M2 macrophage is still unknown. Resolvin D1 and D2 (RvD1 and RvD2) are docosahexaenoic acid (DHA)‐derived docosanoids converted by 15‐lipoxygenase then 5‐lipoxygenase successively. We found that although dietary DHA can inhibit prostate cancer in vivo, neither DHA (10 μmol/L) nor RvD (100 nmol/L) can directly inhibit the proliferation of prostate cancer cells in vitro. Unexpectedly, in a cancer cell‐macrophage co‐culture system, both DHA and RvD significantly inhibited cancer cell proliferation. RvD1 and RvD2 inhibited tumour‐associated macrophage (TAM or M2d) polarization. Meanwhile, RvD1 and RvD2 also exhibited anti‐inflammatory effects by inhibiting LPS‐interferon (IFN)‐γ‐induced M1 polarization as well as promoting interleukin‐4 (IL‐4)‐mediated M2a polarization. These differential polarization processes were mediated, at least in part, by protein kinase A. These results suggest that regulation of macrophage polarization using RvDs may be a potential therapeutic approach in the management of prostate cancer.  相似文献   

6.
Renal interstitial fibrosis is a common pathological feature in progressive kidney diseases currently lacking effective treatment. Nicotinamide (NAM), a member of water‐soluble vitamin B family, was recently suggested to have a therapeutic potential for acute kidney injury (AKI) in mice and humans. The effect of NAM on chronic kidney pathologies, including renal fibrosis, is unknown. Here we have tested the effects of NAM on renal interstitial fibrosis using in vivo and in vitro models. In vivo, unilateral urethral obstruction (UUO) induced renal interstitial fibrosis as indicated Masson trichrome staining and expression of pro‐fibrotic proteins, which was inhibited by NAM. In UUO, NAM suppressed tubular atrophy and apoptosis. In addition, NAM suppressed UUO‐associated T cell and macrophage infiltration and induction of pro‐inflammatory cytokines, such as TNF‐α and IL‐1β. In cultured mouse proximal tubule cells, NAM blocked TGF–β‐induced expression of fibrotic proteins, while it marginally suppressed the morphological changes induced by TGF‐β. NAM also suppressed the expression of pro‐inflammatory cytokines (eg MCP‐1 and IL‐1β) during TGF‐β treatment of these cells. Collectively, the results demonstrate an anti‐fibrotic effect of NAM in kidneys, which may involve the suppression of tubular injury and inflammation.  相似文献   

7.
Zinc deficiency is common in the liver of patients with chronic liver disease. Zinc supplementation suppresses the progression of liver fibrosis induced by bile duct ligation (BDL) in mice. The present study was undertaken to specifically investigate a possible mechanism by which zinc plays this role in the liver. Kunming mice were subjected to BDL for 4 weeks to induce liver fibrosis, and concomitantly treated with zinc sulfite or saline as control by gavage once a day. The results showed that zinc supplementation significantly suppressed liver fibrosis and inflammation along with inhibition of hepatic stellate cells activation induced by BDL. These inhibitory effects were accompanied by the reduction of collagen deposition and a significant reduction of macrophage infiltration affected livers. Importantly, zinc selectively inhibited M1 macrophage polarization and M1-related inflammatory cytokines. This inhibitory effect was further confirmed by the reduction of relevant biomarkers of M1 macrophages including inducible NO synthase (iNOS), monocyte chemotactic protein-1 (MCP-1/CCL2), and tumor necrosis factor-α in the zinc supplemented BDL livers. In addition, zinc inhibition of M1 macrophages was associated with a decrease of Notch1 expression. Taken together, these data indicated that zinc supplementation inhibited liver inflammation and fibrosis in BDL mice through selective suppression of M1 macrophages, which is associated with inhibition of Notch1 pathway in M1 macrophage polarization.  相似文献   

8.
Celastrol, a pentacyclic tritepene extracted from Tripterygium Wilfordi plant, showing potent liver protection effects on several liver‐related diseases. However, the anti‐inflammatory potential of celastrol in liver fibrosis and the detailed mechanisms remain uncovered. This study was to investigate the anti‐inflammatory effect of celastrol in liver fibrosis and to further reveal mechanisms of celastrol‐induced anti‐inflammatory effects with a focus on AMPK‐SIRT3 signalling. Celastrol showed potent ameliorative effects on liver fibrosis both in activated hepatic stellate cells (HSCs) and in fibrotic liver. Celastrol remarkably suppressed inflammation in vivo and inhibited the secretion of inflammatory factors in vitro. Interestingly, celastrol increased SIRT3 promoter activity and SIRT3 expression both in fibrotic liver and in activated HSCs. Furthermore, SIRT3 silencing evidently ameliorated the anti‐inflammatory potential of celastrol. Besides, we found that celastrol could increase the AMPK phosphorylation. Further investigation showed that SIRT3 siRNA decreased SIRT3 expression but had no obvious effect on phosphorylation of AMPK. In addition, inhibition of AMPK by employing compound C (an AMPK inhibitor) or AMPK1α siRNA significantly suppressed SIRT3 expression, suggesting that AMPK was an up‐stream protein of SIRT3 in liver fibrosis. We further found that depletion of AMPK significantly attenuated the inhibitory effect of celastrol on inflammation. Collectively, celastrol attenuated liver fibrosis mainly through inhibition of inflammation by activating AMPK‐SIRT3 signalling, which makes celastrol be a potential candidate compound in treating or protecting against liver fibrosis.  相似文献   

9.
Inflammation plays a crucial role in the occurrence and development of renal fibrosis, which ultimately results in end-stage renal disease (ESRD). There is new focus on lymphangiogenesis in the field of inflammation. Recent studies have revealed the association between lymphangiogenesis and renal fibrosis, but the source of lymphatic endothelial cells (LECs) is not clear. It has also been reported that macrophages are involved in lymphangiogenesis through direct and indirect mechanisms in other tissues. We hypothesized that there was a close relationship between macrophages and lymphatic endothelial progenitor cells in renal fibrosis. In this study, we demonstrated that lymphangiogenesis occurred in a renal fibrosis model and was positively correlated with the degree of fibrosis and macrophage infiltration. Compared to resting (M0) macrophages and alternatively activated (M2) macrophages, classically activated (M1) macrophages predominantly transdifferentiated into LECs in vivo and in vitro. VEGF-C further increased M1 macrophage polarization and transdifferentiation into LECs by activating VEGFR3. It was suggested that VEGF-C/VEGFR3 pathway activation downregulated macrophage autophagy and subsequently regulated macrophage phenotype. The induction of autophagy in macrophages by rapamycin decreased M1 macrophage polarization and differentiation into LECs. These results suggested that M1 macrophages promoted lymphangiogenesis and contributed to newly formed lymphatic vessels in the renal fibrosis microenvironment, and VEGF-C/VEGFR3 signaling promoted macrophage M1 polarization by suppressing macrophage autophagy and then increased the transdifferentiation of M1 macrophages into LECs.Subject terms: Lymphangiogenesis, End-stage renal disease  相似文献   

10.
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.  相似文献   

11.
Chlamydia pneumoniae (CP) lung infection can induce chronic lung inflammation and is associated with not only acute asthma but also COPD exacerbations. However, in mouse models of CP infection, most studies have investigated specifically the acute phase of the infection and not the longer-term chronic changes in the lungs. We infected C57BL/6 mice with 5×105 CP intratracheally and monitored inflammation, cellular infiltrates and cytokine levels over time to investigate the chronic inflammatory lung changes. While bacteria numbers declined by day 28, macrophage numbers remained high through day 35. Immune cell clusters were detected as early as day 14 and persisted through day 35, and stained positive for B, T, and follicular dendritic cells, indicating these clusters were inducible bronchus associated lymphoid tissues (iBALTs). Classically activated inflammatory M1 macrophages were the predominant subtype early on while alternatively activated M2 macrophages increased later during infection. Adoptive transfer of M1 but not M2 macrophages intratracheally 1 week after infection resulted in greater lung inflammation, severe fibrosis, and increased numbers of iBALTS 35 days after infection. In summary, we show that CP lung infection in mice induces chronic inflammatory changes including iBALT formations as well as fibrosis. These observations suggest that the M1 macrophages, which are part of the normal response to clear acute C. pneumoniae lung infection, result in an enhanced acute response when present in excess numbers, with greater inflammation, tissue injury, and severe fibrosis.  相似文献   

12.
In response to different stimuli, macrophages can differentiate into either a pro‐inflammatory subtype (M1, classically activated macrophages) or acquire an anti‐inflammatory phenotype (M2, alternatively activated macrophages). Candida albicans is the most important opportunistic fungus in nosocomial infections, and it is contended by neutrophils and macrophages during the first steps of the invasive infection. Murine macrophages responses to C. albicans have been widely studied, whereas the responses of human‐polarized macrophages remain less characterized. In this study, we have characterized the proteomic differences between human M1‐ and M2‐polarized macrophages, both in basal conditions and in response to C. albicans, by quantitative proteomics (2DE). This proteomic approach allowed us to identify metabolic routes and cytoskeletal rearrangement components that are the most relevant differences between M1 and M2 macrophages. The analysis has revealed fructose‐1,6‐bisphosphatase 1, a critical enzyme in gluconeogenesis, up‐regulated in M1, as a novel protein marker for macrophage polarization. Regarding the response to C. albicans, an M1‐to‐M2 switch in polarization was observed. This M1‐to‐M2 switch might contribute to Candida pathogenicity by decreasing the generation of specific immune responses, thus enhancing fungal survival and colonization, or instead, may be part of the host attempt to reduce the inflammation and limit the damage of the infection.  相似文献   

13.
The activation of pancreatic stellate cells (PSCs) plays a critical role in the progression of pancreatic fibrosis. Nuclear factor-kappa B ( NF-κB) is associated with chronic pancreatitis (CP). Previous evidence indicated that NF-κB in acinar cells played a double-edged role upon pancreatic injury, whereas NF-κB in inflammatory cells promoted the progression of CP. However, the effects of NF-κB in PSCs have not been studied. In the present study, using two CP models and RNAi strategy of p65 in cultured PSCs, we found that the macrophage infiltration and MCP-1 expression were increased, and the NF-κBp65 protein level was elevated. NF-κBp65 was co-expressed with PSCs. In vitro, TGF-β1 induced overexpression of the TGF-β receptor 1, phosphorylated TGF-β1–activated kinase 1 (p-TAK1) and NF-κB in the PSCs. Moreover, the concentration of MCP-1 in the supernatant of activated PSCs was elevated. The migration of BMDMs was promoted by the supernatant of activated PSCs. Further knockdown of NF-κBp65 in PSCs resulted in a decline of BMDM migration, accompanied by a lower production of MCP-1. These findings indicate that TGF-β1 can induce the activation of NF-κB pathway in PSCs by regulating p-TAK1, and the NF-κB pathway in PSCs may be a target of chronic inflammation and fibrosis.  相似文献   

14.
15.
Chronic pancreatitis (CP) is described as progressive inflammatory fibrosis of pancreas, accompanied with irreversible impaired endocrine and exocrine insufficiency. Pancreatic stellate cells (PSCs) are widely distributed in the stroma of the pancreas and PSCs activation has been shown as one of the leading causes for pancreatic fibrosis. Our previous study has revealed that autophagy is dramatically activated in CP tissues, which facilitates PSCs activation and pancreatic fibrosis. Long non-coding RNAs (LncRNAs) have been recognized as crucial regulators for fibrosis-related diseases. LncRNAs interact with RNA binding protein or construct competitive endogenous RNA (ceRNA) hypothesis which elicited the fibrotic processes. Until now, the effects of lncRNAs on PSCs activation and pancreatic fibrosis have not been clearly explored. In this study, a novel lncRNA named Lnc-PFAR was found highly expressed in mouse and human CP tissues. Our data revealed that Lnc-PFAR facilitates PSCs activation and pancreatic fibrosis via RB1CC1-induced autophagy. Lnc-PFAR reduces miR-141 expression by suppressing pre-miR-141 maturation, which eventually upregulates the RB1CC1 and fibrosis-related indicators expression. Meanwhile, Lnc-PFAR enhanced PSCs activation and pancreatic fibrosis through trigging autophagy. Our study interrogates a novel lncRNA-induced mechanism in promoting the development of pancreatic fibrosis, and Lnc-PFAR is suggested to be a prospective therapeutic target in clinical scenarios.Subject terms: RNAi, Diagnostic markers, Chronic pancreatitis  相似文献   

16.
A previous study has demonstrated that Ganshuang granule (GSG) plays an anti‐fibrotic role partially by deactivation of hepatic stellate cells (HSCs). In HSCs activation, mammalian target of rapamycin (mTOR)‐autophagy plays an important role. We attempted to investigate the role of mTOR‐autophagy in anti‐fibrotic effect of GSG. The cirrhotic mouse model was prepared to demonstrate the anti‐fibrosis effect of GSG. High performance liquid chromatography (HPLC) analyses were used to identify the active component of GSG. The primary mouse HSCs were isolated and naringin was added into activated HSCs to observe its anti‐fibrotic effect. 3‐methyladenine (3‐MA) and Insulin‐like growth factor‐1 (IGF‐1) was added, respectively, into fully activated HSCs to explore the role of autophagy and mTOR. GSG played an anti‐fibrotic role through deactivation of HSCs in cirrhotic mouse model. The concentration of naringin was highest in GSG by HPLC analyses and naringin markedly suppressed HSCs activation in vitro, which suggested that naringin was the main active component of GSG. The deactivation of HSCs caused by naringin was not because of the autophagic activation but mTOR inhibition, which was supported by the following evidence: first, naringin induced autophagic activation, but when autophagy was blocked by 3‐MA, deactivation of HSCs was not attenuated or reversed. Second, naringin inhibited mTOR pathway, meanwhile when mTOR was activated by IGF‐1, deactivation of HSCs was reversed. In conclusion, we have demonstrated naringin in GSG suppressed activation of HSCs for anti‐fibrosis effect by inhibition of mTOR, indicating a potential therapeutic application for liver cirrhosis.  相似文献   

17.
Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin‐1 (Trx‐1) is an oxidative stress‐limiting protein with anti‐inflammatory and anti‐apoptotic properties. In contrast, its truncated form (Trx‐80) exerts pro‐inflammatory effects. Here we analyzed whether Trx‐80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro‐inflammatory phenotype. Trx‐80 at 1 µg/ml significantly attenuated the polarization of anti‐inflammatory M2 macrophages induced by exposure to either IL‐4 at 15 ng/ml or IL‐4/IL‐13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL‐10. By contrast, in LPS‐challenged macrophages, Trx‐80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF‐α and MCP‐1. When Trx‐80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL‐4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx‐80. Moreover, the Trx‐80 treatment led to a significantly increased aortic lesion area. The ability of Trx‐80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. J. Cell. Physiol. 228: 1577–1583, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Hepatocarcinoma‐intestine‐pancreas/pancreatitis‐associated protein (HIP/PAP), a C‐type lectin, exerts anti‐oxidative, anti‐inflammatory, bactericidal, anti‐apoptotic, and mitogenic functions in several cell types and tissues. In this study, we explored the role of HIP/PAP in pulmonary fibrosis (PF). Expression of HIP/PAP and its murine counterpart, Reg3B, was markedly increased in fibrotic human and mouse lung tissues. Adenovirus‐mediated HIP/PAP expression markedly alleviated bleomycin (BLM)‐induced lung injury, inflammation, and fibrosis in mice. Adenovirus‐mediated HIP/PAP expression alleviated oxidative injury and lessened the decrease in pulmonary superoxide dismutase (SOD) activity in BLM‐treated mice, increased pulmonary SOD expression in normal mice, and HIP/PAP upregulated SOD expression in cultured human alveolar epithelial cells (A549) and human lung fibroblasts (HLF‐1). Moreover, in vitro experiments showed that HIP/PAP suppressed the growth of HLF‐1 and ameliorated the H2O2‐induced apoptosis of human alveolar epithelial cells (A549 and HPAEpiC) and human pulmonary microvascular endothelial cells (HPMVEC). In HLF‐1, A549, HPAEpiC, and HPMVEC cells, HIP/PAP did not affect the basal levels, but alleviated the TGF‐β1‐induced down‐regulation of the epithelial/endothelial markers E‐cadherin and vE‐cadherin and the over‐expression of mesenchymal markers, such as α‐SMA and vimentin. In conclusion, HIP/PAP was found to serve as a potent protective factor in lung injury, inflammation, and fibrosis by attenuating oxidative injury, promoting the regeneration of alveolar epithelial cells, and antagonizing the pro‐fibrotic actions of the TGF‐β1/Smad signaling pathway.  相似文献   

19.

Background

Chronic pancreatitis (CP) is a necroinflammatory process resulting in extensive pancreatic fibrosis. Granulocyte colony-stimulating factor (G-CSF), a hematopoietic stem cell mobilizer, has been shown to exert an anti-fibrotic effect partly through the enrichment of bone marrow (BM) cells in fibrotic organ. We aimed to test the effect of G-CSF on fibrosis in a mouse model of CP.

Methods

CP was induced in C57Bl/6J mice by consecutive cerulein injection (50 µg/kg/day, 2 days a week) for 6 weeks. Mice were then treated with G-CSF (200 µg/kg/day, 5 day a week) or normal saline for 1 week, and sacrificed at week 7 or week 9 after first cerulein injection. Pancreatic histology, pancreatic matrix metallopeptidase 9 (MMP-9), MMP-13 and collagen expression were examined. Pancreatic myofibroblasts were isolated and cultured with G-CSF. Collagen, MMP-9 and MMP-13 expression by myofibroblasts was examined. The BM-mismatched mice model was used to examine the change of BM-derived myofibroblasts and non-myofibroblastic BM cells by G-CSF in the pancreas.

Results

The pancreatic collagen expression were significantly decreased in the G-CSF-treated group sacrificed at week 9. While collagen produced from myofibroblasts was not affected by G-CSF, the increase of MMP13 expression was observed in vitro. There were no effect of G-CSF in the number of myofibroblasts and BM-derived myofibroblasts. However, the number of non-myofibroblastic BM cells and macrophages were significantly increased in the pancreata of cerulein- and G-CSF-treated mice, suggesting a potential anti-fibrotic role of non-myofibroblastic BM cells and macrophages stimulated by G-CSF.

Conclusions

Our data indicated that G-CSF contributed to the regression of pancreatic fibrosis. The anti-fibrotic effects were possibly through the stimulation of MMP-13 from myofibroblasts, and the enhanced accumulation of non-myofibroblastic BM cells and macrophages in the pancreas.  相似文献   

20.
Pancreatic fibrosis, a prominent histopathological feature of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma, is essentially a dynamic process that leads to irreversible scarring of parenchymal tissues of the pancreas. Though the exact mechanisms of its initiation and development are poorly understood, recent studies suggested that the activation of pancreatic stellate cells (PSCs) plays a critical role in eliciting such active course of fibrogenesis. Anthraquinone compounds possess anti-inflammatory bioactivities whereas its natural derivative rhein has been shown to effectively reduce tissue edema and free-radical production in rat models of inflammatory conditions. Apart from its anti-inflammatory properties, rhein actually exerts strong anti-fibrotic effects in our current in-vivo and in-vitro experiments. In the mouse model of cerulein-induced CP, prolonged administration of rhein at 50 mg/kg/day significantly decreased immunoreactivities of the principal fibrotic activators alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β) on pancreatic sections implicating the activation of PSCs, which is the central tread to fibrogenesis, was attenuated. Consequently, the overwhelmed deposition of extracellular matrix proteins fibronectin 1 (FN1) and type I collagen (COL I-α1) in exocrine parenchyma was found accordingly reduced. In addition, the expression levels of sonic hedgehog (SHH), which plays important roles in molecular modulation of various fibrotic processes, and its immediate effector GLI1 in pancreatic tissues were positively correlated to the degree of cerulein-induced fibrosis. Such up-regulation of SHH signaling was restrained in rhein-treated CP mice. In cultured PSCs, we demonstrated that the expression levels of TGF-β-stimulated fibrogenic markers including α-SMA, FN1 and COL I-α1 as well as SHH were all notably suppressed by the application of rhein at 10 μM. The present study firstly reported that rhein attenuates PSC activation and suppresses SHH/GLI1 signaling in pancreatic fibrosis. With strong anti-fibrotic effects provided, rhein can be a potential remedy for fibrotic and/or PSC-related pathologies in the pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号