首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐small cell lung cancer (NSCLC) is the most prevalent type of lung cancer. The abnormal expression of many long non‐coding RNAs (lncRNAs) has been reported involved in the progression of various tumours, which can be used as diagnostic indicators or antitumour targets. Here, we found that the long non‐coding RNA 00312 was down‐regulated in paired NSCLC tissues and correlated with poor clinical outcome; decreased linc00312 expression in NSCLC was associated with larger and later stage tumours. Functional experiments showed that linc00312 could inhibit cell proliferation and promote apoptosis in vitro and in vivo. Furthermore, we found that HOXA5 could bind in the promoter of linc00312 and up‐regulated the expression of it. Moreover, linc00312 was down‐regulated in the plasma of NSCLC patients compared with that of healthy volunteers or other pulmonary diseases patients. Taken together, our findings indicated that linc00312 could be a novel diagnosis biomarker and a promising therapeutic target for NSCLC.  相似文献   

2.
3.
Long non‐coding RNAs (lncRNAs), a group of non‐protein‐coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament‐associated protein 1‐antisense RNA 1 (AFAP1‐AS1), a well‐known long non‐coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1‐AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1‐AS1 in the biological function and mechanism of human cancers.  相似文献   

4.
Lung cancer‐associated mortality is the most common cause of cancer death worldwide. Non‐coding RNAs (ncRNAs), with no protein‐coding ability, have multiple biological roles. Long non‐coding RNAs (lncRNAs) are a recently characterized class of ncRNAs that are over 200 nucleotides in length. Many lncRNAs have the ability of facilitating or inhibiting the development and progression of tumours, including non‐small cell lung cancer (NSCLC). Because of their fundamental roles in regulating gene expression, along with their involvement in the biological mechanisms underlying tumourigenesis, they are a promising class of tissue‐ and/or blood‐based cancer biomarkers. In this review, we highlight the emerging roles of lncRNAs in NSCLC, and discuss their potential clinical applications as diagnostic and prognostic markers and as therapeutic targets.  相似文献   

5.
6.
Thrombopoietin (TPO) is a haematopoietic cytokine mainly produced by the liver and kidneys, which stimulates the production and maturation of megakaryocytes. In the past decade, numerous studies have investigated the effects of TPO outside the haematopoietic system; however, the role of TPO in the progression of solid cancer, particularly lung cancer, has not been well studied. Exogenous TPO does not affect non‐small‐cell lung cancer (NSCLC) cells as these cells show no or extremely low TPO receptor expression; therefore, in this study, we focused on endogenous TPO produced by NSCLC cells. Immunohistochemical analysis of 150 paired NSCLC and adjacent normal tissues indicated that TPO was highly expressed in NSCLC tissues and correlated with clinicopathological parameters including differentiation, P‐TNM stage, lymph node metastasis and tumour size. Suppressing endogenous TPO by small interfering RNA inhibited the proliferation and migration of NSCLC cells. Moreover, TPO interacted with the EGFR protein and delayed ligand‐induced EGFR degradation, thus enhancing EGFR signalling. Notably, overexpressing TPO in EGF‐stimulated NSCLC cells facilitated cell proliferation and migration, whereas no obvious changes were observed without EGF stimulation. Our results suggest that endogenous TPO promotes tumorigenicity of NSCLC via regulating EGFR signalling and thus could be a therapeutic target for treating NSCLC.  相似文献   

7.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

8.
Oral squamous cell carcinoma (OSCC) is an oral and maxillofacial malignancy that exhibits high incidence worldwide. In diverse human cancers, the long non‐coding RNA (lncRNA) highly up‐regulated in liver cancer (HULC) is aberrantly expressed, but how HULC affects OSCC development and progression has remained mostly unknown. We report that HULC was abnormally up‐regulated in oral cancer tissues and OSCC cell lines, and that suppression of HULC expression in OSCC cells not only inhibited the proliferation, drug tolerance, migration and invasion of the cancer cells, but also increased their apoptosis rate. Notably, in a mouse xenograft model, HULC depletion reduced tumorigenicity and inhibited the epithelial‐to‐mesenchymal transition process. Collectively, our findings reveal a crucial role of the lncRNA HULC in regulating oral cancer carcinogenesis and tumour progression, and thus suggest that HULC could serve as a novel therapeutic target for OSCC.  相似文献   

9.
10.
11.
12.
It has been reported that miR‐376a is involved in the formation and progression of several types of cancer. However, the expression and function of miR‐376a is still unknown in non‐small cell lung carcinomas (NSCLC). In this study, the expression of miR‐376a in NSCLC tissues and cell lines were examined by real‐time PCR, the effects of miR‐376a on cell proliferation, apoptosis and invasion were evaluated in vitro. Luciferase reporter assay was performed to identify the targets of miR‐376a. The results showed that miR‐376a was significantly downregulated in NSCLC tissues and cell lines. Restoration of miR‐376a in NSCLC cell line A549 significantly inhibited cell proliferation, increased cell apoptosis and suppressed cell invasion, compared with control‐transfected A549 cells. Luciferase reporter assay showed that c‐Myc, an oncogene that regulating cell survival, angiogenesis and metastasis, was a direct target of miR‐376a. Over‐expression of miR‐376a decreased the mRNA and protein levels of c‐Myc in A549 cells. In addition, upregulation of c‐Myc inhibited miR‐376a‐induced inhibition of cell proliferation and invasion in A549 cells. Therefore, our results indicate a tumor suppressor role of miR‐376a in NSCLC by targeting c‐Myc. miR‐376a may be a promising therapeutic target for NSCLC.  相似文献   

13.
14.
Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD‐1) are immune checkpoint proteins expressed in T cells. Although CTLA4 expression was found in multiple tumours including non‐small cell lung cancer (NSCLC) tissues and cells, its function in tumour cells is unknown. Recently, PD‐1 was found to be expressed in melanoma cells and to promote tumorigenesis. We found that CTLA4 was expressed in a subset of NSCLC cell lines and in a subgroup of cancer cells within the lung cancer tissues. We further found that in NSCLC cells, anti‐CTLA4 antibody can induce PD‐L1 expression, which is mediated by CTLA4 and the EGFR pathway involving phosphorylation of MEK and ERK. In CTLA4 knockout cells, EGFR knockout cells or in the presence of an EGFR tyrosine kinase inhibitor, anti‐CTLA4 antibody was not able to induce PD‐L1 expression in NSCLC cells. Moreover, anti‐CTLA4 antibody promoted NSCLC cell proliferation in vitro and tumour growth in vivo in the absence of adaptive immunity. These results suggest that tumour cell‐intrinsic CTLA4 can regulate PD‐L1 expression and cell proliferation, and that anti‐CTLA4 antibody, by binding to the tumour cell‐intrinsic CTLA4, may result in the activation of the EGFR pathway in cancer cells.  相似文献   

15.
The aberrant expression and dysfunction of long non‐coding RNAs (lncRNAs) have been identified as critical factors governing the initiation and progression of different human cancers, including diffuse large B‐cell lymphoma (DLBCL). LncRNA small nucleolar RNA host gene 16 (SNHG16) has been recognized as a tumour‐promoting factor in various types of cancer. However, the biological role of SNHG16 and its underlying mechanism are still unknown in DLBCL. Here we disclosed that SNHG16 was overexpressed in DLBCL tissues and the derived cell lines. SNHG16 knockdown significantly suppressed cell proliferation and cell cycle progression, and it induced apoptosis of DLBCL cells in vitro. Furthermore, silencing of SNHG16 markedly repressed in vivo growth of OCI‐LY7 cells. Mechanistically, SNHG16 directly interacted with miR‐497‐5p by acting as a competing endogenous RNA (ceRNA) and inversely regulated the abundance of miR‐497‐5p in DLBCL cells. Moreover, the proto‐oncogene proviral integration site for Moloney murine leukaemia virus 1 (PIM1) was identified as a novel direct target of miR‐497‐5p. SNHG16 overexpression rescued miR‐497‐5p‐induced down‐regulation of PIM1 in DLBCL cells. Importantly, restoration of PIM1 expression reversed SNHG16 knockdown‐induced inhibition of proliferation, G0/G1 phase arrest and apoptosis of OCI‐LY7 cells. Our study suggests that the SNHG16/miR‐497‐5p/PIM1 axis may provide promising therapeutic targets for DLBCL progression.  相似文献   

16.
We previously reported and revised the nasopharyngeal epithelium specific protein CCDC19 and identified it as a potential tumour suppressor in nasopharyngeal carcinoma. The purpose of this study was to investigate the involvement of CCDC19 in the pathogenesis of human non‐small cell lung cancers (NSCLC). Down‐regulated CCDC19 expression was observed in NSCLC tissues and cells compared to normal tissues. However, reduced protein expression did not correlate with the status of NSCLC progression. Instead, we observed that patients with lower CCDC19 expression had a shorter overall survival than did patients with higher CCDC19 expression. Lentiviral‐mediated CCDC19 overexpression significantly suppressed cell proliferation and cell cycle transition from G1 to S and G2 phases in NSCLC cells. Knocking down CCDC19 expression significantly restored the ability of cell growth in CCDC19 overexpressing NSCLC cells. Mechanistically CCDC19 functions as a potential tumour suppressor by stimulating miR‐184 suppression of C‐Myc thus blocking cell growth mediated by the PI3K/AKT/C‐Jun pathway. Our studies are the first to demonstrate that reduced expression of CCDC19 is an unfavourable factor in NSCLC.  相似文献   

17.
18.
19.
20.
Long non‐coding RNA MIR503 host gene (MIR503HG) is located on chromosome Xq26.3, and has been found to be deregulated in many types of human malignancy and function as tumour suppressor or promoter based on cancer types. The role of MIR503HG in breast cancer was still unknown. In our study, we found MIR503HG expression was significantly decreased in triple‐negative breast cancer tissues and cell lines. Furthermore, we observed low MIR503HG expression was correlated with late clinical stage, lymph node metastasis and distant metastasis. In the survival analysis, we observed that triple‐negative breast cancer patients with low MIR503HG expression had a statistically significant worse prognosis compared with those with high MIR503HG expression, and low MIR503HG expression was a poor independent prognostic factor for overall survival in triple‐negative breast cancer patients. The study in vitro suggested MIR503HG inhibits cell migration and invasion via miR‐103/OLFM4 axis in triple negative breast cancer. In conclusion, MIR503HG functions as a tumour suppressive long non‐coding RNA in triple negative breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号