首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
The hair‐like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo‐proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm‐promoting function in type IV pili‐producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non‐piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well‐studied type IV pili‐producing heterotrophic bacteria.  相似文献   

2.
Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram‐positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram‐negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram‐positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram‐positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus‐like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus‐related opening in the cell wall, may mediate DNA uptake in S. pneumoniae.  相似文献   

3.
As mediators of adhesion, autoaggregation and bacteria‐induced plasma membrane reorganization, type IV pili are at the heart of Neisseria meningitidis infection. Previous studies have proposed that two minor pilins, PilV and PilX, are displayed along the pilus structure and play a direct role in mediating these effects. In contrast with this hypothesis, combining imaging and biochemical approaches we found that PilV and PilX are located in the bacterial periplasm rather than along pilus fibers. Furthermore, preventing exit of these proteins from the periplasm by fusing them to the mCherry protein did not alter their function. Deletion of the pilV and pilX genes led to a decrease in the number, but not length, of pili displayed on the bacterial surface indicating a role in the initiation of pilus biogenesis. By finely regulating the expression of a central component of the piliation machinery, we show that the modest reductions in the number of pili are sufficient to recapitulate the phenotypes of the pilV and pilX mutants. We further show that specific type IV pili‐dependent functions require different ranges of pili numbers.  相似文献   

4.
Archaea display a variety of type IV pili on their surface and employ them in different physiological functions. In the crenarchaeon Sulfolobus acidocaldarius the most abundant surface structure is the aap pilus (a rchaeal a dhesive p ilus). The construction of in frame deletions of the aap genes revealed that all the five genes (aapA, aapX, aapE, aapF, aapB) are indispensible for assembly of the pilus and an impact on surface motility and biofilm formation was observed. Our analyses revealed that there exists a regulatory cross‐talk between the expression of aap genes and archaella (formerly archaeal flagella) genes during different growth phases. The structure of the aap pilus is entirely different from the known bacterial type IV pili as well as other archaeal type IV pili. An aap pilus displayed 3 stranded helices where there is a rotation per subunit of ~ 138° and a rise per subunit of ~ 5.7 Å. The filaments have a diameter of ~ 110 Å and the resolution was judged to be ~ 9 Å. We concluded that small changes in sequence might be amplified by large changes in higher‐order packing. Our finding of an extraordinary stability of aap pili possibly represents an adaptation to harsh environments that S. acidocaldarius encounters.  相似文献   

5.
Lysobacter enzymogenes, a member of Xanthomonadaceae, is a promising tool to control crop-destroying fungal pathogens. One of its key antifungal virulence factors is the type IV pili that are required for twitching motility. Transposon mutagenesis of L. enzymogenes revealed that the production of type IV pili required the presence of the Le2152 gene, which encodes an AlgC-type phosphomannomutase/phosphoglucomutase (PMM). However, in addition to the cytoplasmic PMM domain, the Le2152 gene product contains a ~200-aa N-terminal periplasmic domain that is anchored in the membrane by two transmembrane segments and belongs to the dCache superfamily of periplasmic sensor domains. Sequence analysis identified similar membrane-anchored PMMs, encoded in conserved coaBC-dut-algC gene clusters, in a variety of gammaproteobacteria, either as the sole PMM gene in the entire genome or in addition to the gene encoding the stand-alone enzymatic domain. Previously overlooked N-terminal periplasmic sensor domains were detected in the well-characterized PMMs of Pseudomonas aeruginosa and Xanthomonas campestris, albeit not in the enzymes from Pseudomonas fluorescens, Pseudomonas putida or Azotobacter vinelandii. It appears that after the initial cloning of the enzymatically active soluble part of P. aeruginosa AlgC in 1991, all subsequent studies utilized N-terminally truncated open reading frames. The N-terminal dCache sensor domain of AlgC is predicted to modulate the PMM activity of the cytoplasmic domain in response to as yet unidentified environmental signal(s). AlgC-like membrane-bound PMMs appear to comprise yet another environmental signalling system that regulates the production of type IV pili and potentially other systems in certain gammaproteobacteria.  相似文献   

6.
Multiple species within the Acinetobacter genus are nosocomial opportunistic pathogens of increasing relevance worldwide. Among the virulence factors utilized by these bacteria are the type IV pili and a protein O‐glycosylation system. Glycosylation is mediated by O‐oligosaccharyltransferases (O‐OTases), enzymes that transfer the glycan from a lipid carrier to target proteins. O‐oligosaccharyltransferases are difficult to identify due to similarities with the WaaL ligases that catalyze the last step in lipopolysaccharide synthesis. A bioinformatics analysis revealed the presence of two genes encoding putative O‐OTases or WaaL ligases in most of the strains within the genus Acinetobacter. Employing A. nosocomialis M2 and A. baylyi ADP1 as model systems, we show that these genes encode two O‐OTases, one devoted uniquely to type IV pilin, and the other one responsible for glycosylation of multiple proteins. With the exception of ADP1, the pilin‐specific OTases in Acinetobacter resemble the TfpO/PilO O‐OTase from Pseudomonas aeruginosa. In ADP1 instead, the two O‐OTases are closely related to PglL, the general O‐OTase first discovered in Neisseria. However, one of them is exclusively dedicated to the glycosylation of the pilin‐like protein ComP. Our data reveal an intricate and remarkable evolutionary pathway for bacterial O‐OTases and provide novel tools for glycoengineering.  相似文献   

7.
Neisseria meningitidis, a major cause of bacterial meningitis and septicaemia, secretes multiple virulence factors, including the adhesion and penetration protein (App) and meningococcal serine protease A (MspA). Both are conserved, immunogenic, type Va autotransporters harbouring S6‐family serine endopeptidase domains. Previous work suggested that both could mediate adherence to human cells, but their precise contribution to meningococcal pathogenesis was unclear. Here, we confirm that App and MspA are in vivo virulence factors since human CD46‐expressing transgenic mice infected with meningococcal mutants lacking App, MspA or both had improved survival rates compared with mice infected with wild type. Confocal imaging showed that App and MspA were internalized by human cells and trafficked to the nucleus. Cross‐linking and enzyme‐linked immuno assay (ELISA) confirmed that mannose receptor (MR), transferrin receptor 1 (TfR1) and histones interact with MspA and App. Dendritic cell (DC) uptake could be blocked using mannan and transferrin, the specific physiological ligands for MR and TfR1, whereas in vitro clipping assays confirmed the ability of both proteins to proteolytically cleave the core histone H3. Finally, we show that App and MspA induce a dose‐dependent increase in DC death via caspase‐dependent apoptosis. Our data provide novel insights into the roles of App and MspA in meningococcal infection.  相似文献   

8.
9.
The tad (tight adherence) locus encodes a protein translocation system that produces a novel variant of type IV pili. The pilus assembly protein TadZ (called CpaE in Caulobacter crescentus) is ubiquitous in tad loci, but is absent in other type IV pilus biogenesis systems. The crystal structure of TadZ from Eubacterium rectale (ErTadZ), in complex with ATP and Mg2+, was determined to 2.1 Å resolution. ErTadZ contains an atypical ATPase domain with a variant of a deviant Walker‐A motif that retains ATP binding capacity while displaying only low intrinsic ATPase activity. The bound ATP plays an important role in dimerization of ErTadZ. The N‐terminal atypical receiver domain resembles the canonical receiver domain of response regulators, but has a degenerate, stripped‐down ‘active site’. Homology modelling of the N‐terminal atypical receiver domain of CpaE indicates that it has a conserved protein–protein binding surface similar to that of the polar localization module of the social mobility protein FrzS, suggesting a similar function. Our structural results also suggest that TadZ localizes to the pole through the atypical receiver domain during an early stage of pili biogenesis, and functions as a hub for recruiting other pili components, thus providing insights into the Tad pilus assembly process.  相似文献   

10.
11.
Targeted mutations in flgK, and pilD genes in strain KU‐P‐SW005 of Xanthomonas axonopodis pv. glycines, the cause of pustule disease on soybean, led to altered motility phenotypes. The flgK mutants lacked a monopolar flagellum and lost swimming motility, whereas the pilD mutant lacked type IV pili and was unable to move via twitching, a form of surface motility not previously reported for this pathogen. The flgK and pilD mutants were also altered in biofilm production. The flgK and pilD mutants caused reduced disease in susceptible soybean cultivars Spencer when compared to KU‐P‐SW005. Cell counts of the flgK and pilD mutants on plants remained equivalent to KU‐P‐SW005 10 days after inoculation. Complementation of flgK and pilD mutants restored all phenotypes to wild‐type levels. Therefore, flgK and pilD genes that are required for swimming and twitching motility also affected biofilm formation and virulence on soybean.  相似文献   

12.
Neisseria meningitidis is a bacterium responsible for severe sepsis and meningitis. Following type IV pilus‐mediated adhesion to endothelial cells, bacteria proliferating on the cellular surface trigger a potent cellular response that enhances the ability of adhering bacteria to resist the mechanical forces generated by the blood flow. This response is characterized by the formation of numerous 100 nm wide membrane protrusions morphologically related to filopodia. Here, a high‐resolution quantitative live‐cell fluorescence microscopy procedure was designed and used to study this process. A farnesylated plasma membrane marker was first detected only a few seconds after bacterial contact, rapidly followed by actin cytoskeleton reorganization and bulk cytoplasm accumulation. The bacterial type IV pili‐associated minor pilin PilV is necessary for the initiation of this cascade. Plasma membrane composition is a key factor as cholesterol depletion with methyl‐β‐cyclodextrin completely blocks the initiation of the cellular response. In contrast membrane deformation does not require the actin cytoskeleton. Strikingly, plasma membrane remodelling undermicrocolonies is also independent of common intracellular signalling pathways as cellular ATP depletion is not inhibitory. This study shows that bacteria‐induced plasma membrane reorganization is a rapid event driven by a direct cross‐talk between type IV pili and the plasma membrane rather than by the activation of an intracellular signalling pathway that would lead to actin remodelling.  相似文献   

13.
Although type IV pilus has been implicated in the phototactic motility of some unicellular cyanobacteria, its regulatory mechanism and the effect of environmental factors on motility are still unknown. Equally important is the ability of cyanobacterial cells to anchor themselves to an environment that is conducive for survival. We compared the motility of a newly isolated unicellular brackish cyanobacterium, Synechocystis sp. UNIWG, with the morphologically and phylogenetically similar freshwater cyanobacterium Synechocystis sp. PCC6803 under different environmental conditions. The phototactic motility of Synechocystis sp. UNIWG on semisolid BG‐11 medium with various concentrations of nitrogen source was significantly faster than that of Synechocystis PCC6803. Interestingly, the cell surface of Synechocystis sp. UNIWG showed the presence of rigid spicules when grown in liquid BG‐11, a phenomenon that was absent in Synechocystis PCC6803. Negative staining of Synechocystis sp. UNIWG revealed the presence of two distinct pilus morphotypes, which resembled type IV pili and thin pili of Synechocystis PCC6803. This finding suggested a similar pattern of phototactic motility in both strains. However, the rigid spicules on Synechocystis sp. UNIWG seem to be more of a hindrance during type IV motility. It was determined that the spicules were degraded when the cells moved, such as under prolonged darkness and/or depletion of nitrogen source, indicating that the function of the spicules is to attach the cell to an environment that is conducive for its survival. Thus, Synechocystis sp. UNIWG shows phototaxis regulation that is more complex than Synechocystis PCC6803.  相似文献   

14.
Type IV pili are virulence factors in various bacteria. Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Although type IVa pili have been implicated in the virulence of Ralstonia solanacearum, type IVb pili have not previously been described in this plant pathogen. Here, we report the characterization of two distinct tad loci in the R. solanacearum genome. The tad genes encode functions necessary for biogenesis of the Flp subfamily of type IVb pili initially described for the periodontal pathogen Aggregatibacter actinomycetemcomitans. To determine the role of the tad loci in R. solanacearum virulence, we mutated the tadA2 gene located in the megaplasmid that encodes a predicted NTPase previously reported to function as the energizer for Flp pilus biogenesis. Characterization of the tadA2 mutant revealed that it was not growth impaired in vitro or in planta, produced wild-type levels of exopolysaccharide galactosamine, and exhibited swimming and twitching motility comparable with the wild-type strain. However, the tadA2 mutant was impaired in its ability to cause wilting of potato plants. This is the first report where type IVb pili in a phytopathogenic bacterium contribute significantly to plant pathogenesis.  相似文献   

15.
Conjugative type IV secretion systems (T4SSs) are multi‐protein complexes in Gram‐negative and Gram‐positive (G+) bacteria, responsible for spreading antibiotic resistances and virulence factors among different species. Compared to Gram‐negative bacteria, which establish close contacts for conjugative transfer via sex pili, G+ T4SSs are suggested to employ surface adhesins instead. One example is pCF10, an enterococcal conjugative sex‐pheromone responsive plasmid with a narrow host range, thus disseminating genetic information only among closely related species. This MicroCommentary is dedicated to the crystal structure of the pCF10‐encoded adhesion domain of PrgB presented by Schmitt et al. The authors show in their work that this adhesion domain is responsible for biofilm formation, tight binding and condensation of extracellular DNA (eDNA) and conjugative transfer of pCF10. A sophisticated two‐step mechanism for highly efficient conjugative transfer is postulated, including the formation of PrgB‐mediated long‐range intercellular contacts by binding and establishment of shorter‐range contacts via condensation of eDNA. PrgB binding to lipoteichoic acid on the recipient cell surface stabilizes junctions between the mating partners. The major findings by Schmitt et al. will be brought into a broader context and potential medical applications targeting eDNA as essential component in biofilm formation and conjugation will be discussed.  相似文献   

16.
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a human pathogen that causes diseases ranging from skin and soft tissue infections to severe invasive diseases, such as toxic shock syndrome. Each GAS strain carries a particular pilus type encoded in the variable f ibronectin‐binding, c ollagen‐binding, T antigen (FCT) genomic region. Here, we describe the functional analysis of the serotype M2 pilus encoded in the FCT‐6 region. We found that, in contrast to other investigated GAS pili, the ancillary pilin 1 lacks adhesive properties. Instead, the backbone pilin is important for host cell adhesion and binds several host factors, including fibronectin and fibrinogen. Using a panel of recombinant pilus proteins, GAS gene deletion mutants and Lactococcus lactis gain‐of‐function mutants we show that, unlike other GAS pili, the FCT‐6 pilus also contributes to immune evasion. This was demonstrated by a delay in blood clotting, increased intracellular survival of the bacteria in macrophages, higher bacterial survival rates in human whole blood and greater virulence in a Galleria mellonella infection model in the presence of fully assembled FCT‐6 pili.  相似文献   

17.
18.
Type IV pili are important for microcolony formation, biofilm formation, twitching motility, and attachment. We and others have shown that type IV pili are important for protein secretion across the outer membrane, similar to type II secretion systems. This study explored the relationship between protein secretion and pilus formation in Vibrio cholerae. The toxin-coregulated pilus (TCP), a type IV pilus required for V. cholerae pathogenesis, is necessary for the secretion of the colonization factor TcpF (T. J. Kirn, N. Bose, and R. K. Taylor, Mol. Microbiol. 49:81–92, 2003). This phenomenon is not unique to V. cholerae; secreted virulence factors that are dependent on the presence of components of the type IV pilus biogenesis apparatus for secretion have been reported with Dichelobacter nodosus (R. M. Kennan, O. P. Dhungyel, R. J. Whittington, J. R. Egerton, and J. I. Rood, J. Bacteriol. 183:4451–4458, 2001) and Francisella tularensis (A. J. Hager et al., Mol. Microbiol. 62:227–237, 2006). Using site-directed mutagenesis, we demonstrated that the secretion of TcpF is dependent on the presence of selected amino acid R groups at position five. We were unable to find other secretion determinants, suggesting that Y5 is the major secretion determinant within TcpF. We also report that proteins secreted in a type IV pilus biogenesis apparatus-dependent manner have a YXS motif within the first 15 amino acids following the Sec cleavage site. The YXS motif is not present in proteins secreted by type II secretion systems, indicating that this is unique to type IV pilus-mediated secretion. Moreover, we show that TcpF interacts with the pilin TcpA, suggesting that these proteins are secreted by the type IV pilus biogenesis system. These data provide a starting point for understanding how type IV pili can mediate secretion of virulence factors important for bacterial pathogenesis.  相似文献   

19.
The idea that interactions between mutations influence adaptation by driving populations to low and high fitness peaks on adaptive landscapes is deeply ingrained in evolutionary theory. Here, we investigate the impact of epistasis on evolvability by challenging populations of two Pseudomonas aeruginosa clones bearing different initial mutations (in rpoB conferring rifampicin resistance, and the type IV pili gene network) to adaptation to a medium containing l ‐serine as the sole carbon source. Despite being initially indistinguishable in fitness, populations founded by the two ancestral genotypes reached different fitness following 300 generations of evolution. Genome sequencing revealed that the difference could not be explained by acquiring mutations in different targets of selection; the majority of clones from both ancestors converged on one of the following two strategies: (1) acquiring mutations in either PA2449 (gcsR, an l ‐serine‐metabolism RpoN enhancer binding protein) or (2) protease genes. Additionally, populations from both ancestors converged on loss‐of‐function mutations in the type IV pili gene network, either due to ancestral or acquired mutations. No compensatory or reversion mutations were observed in RNA polymerase (RNAP) genes, in spite of the large fitness costs typically associated with mutations in rpoB. Although current theory points to sign epistasis as the dominant constraint on evolvability, these results suggest that the role of magnitude epistasis in constraining evolvability may be underappreciated. The contribution of magnitude epistasis is likely to be greatest under the biologically relevant mutation supply rates that make back mutations probabilistically unlikely.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号