首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   

2.
青藏高原高寒草地生物多样性与生态系统功能的关系   总被引:7,自引:0,他引:7  
生物多样性和生态系统功能(BEF)之间的关系是目前陆地生态系统生态学研究的热点, 对于生态系统的高效利用与管理意义重大, 而且对于退化生态系统功能的恢复及生物多样性的保护有重要的指导作用。高寒草地是青藏高原生态系统的主体, 近年来, 在气候变化与人为干扰等因素的驱动下, 高寒草地生态系统功能严重衰退。为此, 本文在综述物种多样性和生态系统功能及其相互关系研究进展的基础上, 首先从地下生态学过程研究、全球变化对生态系统多功能性的影响等方面解析了目前关于草地生物多样性和生态系统功能研究中存在的问题。继而, 从不同草地类型、草地退化程度、放牧、模拟气候变化、刈割、施肥、封育和补播等干扰利用方式对高寒草地物种多样性与生态系统功能的影响进行了全面的评述。并指出了高寒草地BEF研究中存在的不足, 今后应基于物种功能多样性开展高寒草地BEF研究, 全面且综合地考虑非生物因子(养分资源、外界干扰、环境波动等)对生物多样性与生态系统功能之间关系的影响, 关注尺度效应和要素耦合在全球气候变化对高寒草地BEF研究中的作用。最后, 以高寒草地BEF研究进展和结论为支撑依据, 综合提出了高寒草地资源利用和生物多样性保护的措施与建议: 加强放牧管理, 保护生物多样性; 治理退化草地, 维持生物多样性功能; 加强创新保护理念, 增强生态系统功能。  相似文献   

3.
Biodiversity–ecosystem functioning (BEF) theory has largely focused on species richness, although studies have demonstrated that evenness may have stronger effects. While theory and numerous small‐scale studies support positive BEF relationships, regional studies have documented negative effects of evenness on ecosystem functioning. We analysed a lake dataset spanning the continental US to evaluate whether strong evenness effects are common at broad spatial scales and if BEF relationships are similar across diverse regions and trophic levels. At the continental scale, phytoplankton evenness explained more variance in phytoplankton and zooplankton resource use efficiency (RUE; ratio of biomass to resources) than richness. For individual regions, slopes of phytoplankton evenness–RUE relationships were consistently negative and positive for phytoplankton and zooplankton RUE, respectively, and most slopes did not significantly differ among regions. Findings suggest that negative evenness effects may be more common than previously documented and are not exceptions restricted to highly disturbed systems.  相似文献   

4.
5.
全球变化和人类活动正以空前的速度在世界范围内改变着生物多样性, 这导致了全球生物多样性的锐减以及生产力的下降、病虫害的增加和抗入侵能力的减弱等生态问题。近30年来, 生态学家开始对于生物多样性的持续丧失是否以及如何影响生态系统功能的问题越来越感兴趣, 生物多样性与生态系统功能(biodiversity and ecosystem functioning, BEF)关系的研究应运而生, 并成为生态学研究的热点之一。但长期以来, 研究者更多地关注单一生态系统功能, 而忽略了生态系统能够同时提供多种生态系统功能的能力, 即生态系统多功能性(ecosystem multifunctionality, EMF)。本文综述了EMF研究中功能指标的选择、生物多样性的不同维度、微生物多样性对EMF的影响以及其他非生物因子对EMF的驱动等进展。因只考虑单一功能可能会低估生物多样性对整体生态系统功能的影响, 故生物多样性与生态系统多功能性(BEMF)关系的研究成为BEF关系研究的重点。近年来, BEMF关系的研究发展较快, 在不同生态系统(包括水生、草地、森林、旱地、农业等)、不同研究尺度(从区域到全球尺度)、BEMF关系的驱动机制(从单一驱动机制到多种驱动机制共同作用)、研究方法(包括新概念以及新的量化方法的提出和应用)等方面均取得了新的进展。但仍有不足之处, 如对于EMF研究中功能指标的选取没有统一的标准、对地下微生物多样性的关注度不够、涉及多营养级水平下的BEMF关系研究较少、驱动EMF的机制仍存在争论等。未来应加强对于功能指标选取的标准研究, 综合分析地上、地下生物多样性以及非生物因子对EMF的整体影响, 加强生态系统多服务性(ecosystem multiserviceability, EMS)方法的研究和应用。  相似文献   

6.
Evidence is growing that evolutionary dynamics can impact biodiversity–ecosystem functioning (BEF) relationships. However the nature of such impacts remains poorly understood. Here we use a modelling approach to compare random communities, with no trait evolutionary fine‐tuning, and co‐adapted communities, where traits have co‐evolved, in terms of emerging biodiversity–productivity, biodiversity–stability and biodiversity–invasion relationships. Community adaptation impacted most BEF relationships, sometimes inverting the slope of the relationship compared to random communities. Biodiversity–productivity relationships were generally less positive among co‐adapted communities, with reduced contribution of sampling effects. The effect of community‐adaptation, though modest regarding invasion resistance, was striking regarding invasion tolerance: co‐adapted communities could remain very tolerant to invasions even at high diversity. BEF relationships are thus contingent on the history of ecosystems and their degree of community adaptation. Short‐term experiments and observations following recent changes may not be safely extrapolated into the future, once eco‐evolutionary feedbacks have taken place.  相似文献   

7.
Understanding the mechanisms underlying ecosystem resilience – why some systems have an irreversible response to disturbances while others recover – is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large‐scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small‐scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four‐corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local‐scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues.  相似文献   

8.
Biodiversity and ecosystem functioning in naturally assembled communities   总被引:1,自引:0,他引:1  
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non‐manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real‐world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well‐being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.  相似文献   

9.
Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water‐resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape‐scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi‐scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline.  相似文献   

10.
Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales.  相似文献   

11.
Species diversity affects the functioning of ecosystems, including the efficiency by which communities capture limited resources, produce biomass, recycle and retain biologically essential nutrients. These ecological functions ultimately support the ecosystem services upon which humanity depends. Despite hundreds of experimental tests of the effect of biodiversity on ecosystem function (BEF), it remains unclear whether diversity effects are sufficiently general that we can use a single relationship to quantitatively predict how changes in species richness alter an ecosystem function across trophic levels, ecosystems and ecological conditions. Our objective here is to determine whether a general relationship exists between biodiversity and standing biomass. We used hierarchical mixed effects models, based on a power function between species richness and biomass production (Y = a × Sb), and a database of 374 published experiments to estimate the BEF relationship (the change in biomass with the addition of species), and its associated uncertainty, in the context of environmental factors. We found that the mean relationship (b = 0.26, 95% CI: 0.16, 0.37) characterized the vast majority of observations, was robust to differences in experimental design, and was independent of the range of species richness levels considered. However, the richness–biomass relationship varied by trophic level and among ecosystems; in aquatic systems b was nearly twice as large for consumers (herbivores and detritivores) compared to primary producers; in terrestrial ecosystems, b for detritivores was negative but depended on few studies. We estimated changes in biomass expected for a range of changes in species richness, highlighting that species loss has greater implications than species gains, skewing a distribution of biomass change relative to observed species richness change. When biomass provides a good proxy for processes that underpin ecosystem services, this relationship could be used as a step in modeling the production of ecosystem services and their dependence on biodiversity.  相似文献   

12.
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function.  相似文献   

13.
Stefan Trogisch  Andreas Schuldt  Jürgen Bauhus  Juliet A. Blum  Sabine Both  François Buscot  Nadia Castro‐Izaguirre  Douglas Chesters  Walter Durka  David Eichenberg  Alexandra Erfmeier  Markus Fischer  Christian Geißler  Markus S. Germany  Philipp Goebes  Jessica Gutknecht  Christoph Zacharias Hahn  Sylvia Haider  Werner Härdtle  Jin‐Sheng He  Andy Hector  Lydia Hönig  Yuanyuan Huang  Alexandra‐Maria Klein  Peter Kühn  Matthias Kunz  Katrin N. Leppert  Ying Li  Xiaojuan Liu  Pascal A. Niklaus  Zhiqin Pei  Katherina A. Pietsch  Ricarda Prinz  Tobias Proß  Michael Scherer‐Lorenzen  Karsten Schmidt  Thomas Scholten  Steffen Seitz  Zhengshan Song  Michael Staab  Goddert von Oheimb  Christina Weißbecker  Erik Welk  Christian Wirth  Tesfaye Wubet  Bo Yang  Xuefei Yang  Chao‐Dong Zhu  Bernhard Schmid  Keping Ma  Helge Bruelheide 《Ecology and evolution》2017,7(24):10652-10674
Biodiversity–ecosystem functioning (BEF) research has extended its scope from communities that are short‐lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger‐scale and longer‐time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long‐lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above‐ and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized.  相似文献   

14.
Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more‐diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long‐term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning.  相似文献   

15.
《植物生态学报》2018,42(10):977
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

16.
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

17.
李珊  刘晓娟  马克平 《广西植物》2023,43(8):1524-1536
生物多样性与生态系统功能的关系(BEF)及其内在机制是当前生物多样性研究领域的热点问题。长期以来,以草地生态系统为主的BEF研究积累了大量研究成果,而基于森林生态系统的相关研究则相对较少。亚热带森林生物多样性与生态系统功能实验研究基地(BEF-China)是目前包含树种最多、涉及多样性水平最高的大型森林控制实验样地。该文总结了基于BEF-China平台的研究进展,特别是生物多样性对生态系统生产力、养分循环以及多营养级相互作用关系等方面的影响,并提出了未来BEF-China的研究应注重高通量测序和遥感等新兴技术的应用,在生物多样性的多维度、生态系统的多种组分与多种功能以及BEF研究的多种尺度等交叉方向上持续开展深入研究。针对BEF-China研究成果的梳理有助于理解驱动亚热带森林生物多样性与生态系统功能关系的内在机理,为生物多样性保护和生态修复提供科学依据。  相似文献   

18.
Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses of ecological processes and biodiversity patterns to climate change. However, the understanding of the latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large temperate forest region, considering a range of potential environmental drivers. We found that the stability of regional communities (regional stability) and asynchronous dynamics among local communities (spatial asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem stability, and found that although the ecological drivers of biodiversity, climatic history, resource conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of ecosystem stability at multiple scales were affected by biodiversity and environmental heterogeneity. In particular, α diversity is positively associated with local stability, while β diversity is positively associated with spatial asynchrony, although both relationships are weak. Our study provides the first evidence that latitudinal patterns of the temporal stability of naturally assembled forest metacommunities across scales are driven by biodiversity and environmental heterogeneity. Our findings suggest that the preservation of plant biodiversity within and between forest communities and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster and more intense negative impacts of climate change in the future.  相似文献   

19.
Biodiversity, both aboveground and belowground, is negatively affected by global changes such as drought or warming. This loss of biodiversity impacts Earth's ecosystems, as there is a positive relationship between biodiversity and ecosystem functioning (BEF). Even though soils host a large fraction of biodiversity that underlies major ecosystem functions, studies exploring the relationship between soil biodiversity and ecosystem functioning (sBEF) as influenced by global change drivers (GCDs) remain scarce. Here we highlight the need to decipher sBEF relationships under the effect of interactive GCDs that are intimately connected in a changing world. We first state that sBEF relationships depend on the type of function (e.g., C cycling or decomposition) and biodiversity facet (e.g., abundance, species richness, or biomass) considered. Then, we shed light on the impact of single and interactive GCDs on soil biodiversity and sBEF and show that results from scarce studies studying interactive effects range from antagonistic to additive to synergistic when two individual GCDs cooccur. This indicates the need for studies quantitatively accounting for the impacts of interactive GCDs on sBEF relationships. Finally, we provide guidelines for optimized methodological and experimental approaches to study sBEF in a changing world that will provide more valuable information on the real impact of (interactive) GCDs on sBEF. Together, we highlight the need to decipher the sBEF relationship in soils to better understand soil functioning under ongoing global changes, as changes in sBEF are of immediate importance for ecosystem functioning.  相似文献   

20.
The loss of genetic diversity is accelerating due to habitat loss and population reduction caused by global change and anthropologenic activities. For species-poor ecosystems, the effect of genetic diversity on ecosystem functioning may not be smaller than that of species diversity. Therefore, understanding the relationship between genetic diversity and ecosystem functioning (GD-EF) and its underlying mechanisms is important for biodiversity conservation, responses of ecosystems to environmental change and ecological restoration. Here, we reviewed the studies on the effects of plant genetic diversity on ecosystem structures (community structure of the higher tropic level) and ecosystem functions (primary production, nutrient cycling and ecosystem stability), and the mechanisms underlying these relationships. We also discussed the influence of functional diversity on GD-EF, the comparison of effects of the genetic and species diversity on ecosystem functioning, and the application of GD-EF in the ecological restorations. We finally pointed out the limitations in current studies to provide references for the future: (1) further studies on the mechanisms of GD-EF are needed; (2) no study has evaluated the influence of genetic diversity on maltifunctinarity; (3) the impacts of different measurements of genetic diversity on ecosystem functioning are unclear; (4) there are lack of long-time GD-EF studies and GD-EF studies conducted at multidimensional scales; (5) the relative importance of genetic diversity and other factors on ecosystem functioning in the nature is unclear. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号