首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
3.
副溶血性弧菌(Vibrio parahaemolyticus)是一种经口摄入感染的食源性致病菌,广泛存在于水产品中,然而其进入人胃后的存活情况尚属研究空白。本研究将浓度为10~7 cfu/g的副溶血性弧菌接种于三文鱼和南美白对虾中,运用体外人胃仿生原位消化系统进行消化模拟,经过120 min后,测定食物排空率、胃部pH值变化及幽门排出食糜中副溶血性弧菌的存活情况。结果显示三文鱼的胃排空滞后时间为60 min,南美白对虾为90 min,模拟消化120 min时,两种食糜均未完全排空。胃部pH值为(1.6±0.1),在食物摄入10 min后大幅上升,随着胃酸的不断分泌及食物的消化分解,其pH值开始下降,并保持在5.41左右。在食品消化120 min进入肠道后,副溶血性弧菌并没有完全被胃酸杀灭,对虾中该菌的存活率为(0.119±0.025)%,而三文鱼中存活率为(0.007±0.005)%。综上所述,副溶血性弧菌可随食物基质的消化分解通过胃排空进入肠道,从而躲避胃酸的杀灭并导致人体患病。  相似文献   

4.
对虾肝胰腺坏死病的爆发造成了对虾养殖产业的严重亏损。从上海地区凡纳滨对虾中分离出1株欧文氏弧菌(Vibrio owensii SH-14),该菌株可导致凡纳滨对虾死亡,且死虾出现对虾肝胰腺坏死病的典型症状。经PCR扩增欧文氏弧菌毒力蛋白PirA与PirB对应基因序列,并将其连接到表达质粒pET-21b(pirA)和pGEX-4t-1(pirB)。通过优化诱导表达和亲和层析纯化条件,最终获得大量高纯度的目的蛋白。经冷冻干燥保存为后期抗体合成以及进一步毒力效应研究提供参考。  相似文献   

5.
Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus has been one of the most problematic diseases in marine shrimp aquaculture throughout Southeast Asia and Latin America. To evaluate the effectiveness of a bacteriophage (phage) treatment for AHPND, a series of bioassays were carried out in a marine shrimp (Penaeus vannamei) model using an AHPND-V. parahaemolyticus strain that is highly pathogenic to shrimp. We monitored the mortality and histopathological changes during phage treatment. Shrimps treated with phage prophylaxis and phage therapy displayed significant protection from AHPND and survived a lethal bacterial challenge.  相似文献   

6.
Unique isolates of Vibrio parahaemolyticus (VPAHPND) have previously been identified as the causative agent of acute hepatopancreatic necrosis disease (AHPND) in shrimp. AHPND is characterized by massive sloughing of tubule epithelial cells of the hepatopancreas (HP), proposed to be induced by soluble toxins released from VPAHPND that colonize the shrimp stomach. Since these toxins (produced in broth culture) have been reported to cause AHPND pathology in reverse gavage bioassays with shrimp, we used ammonium sulfate precipitation to prepare protein fractions from broth cultures of VPAHPND isolates for screening by reverse gavage assays. The dialyzed 60% ammonium sulfate fraction caused high mortality within 24–48 hours post-administration, and histological analysis of the moribund shrimp showed typical massive sloughing of hepatopancreatic tubule epithelial cells characteristic of AHPND. Analysis of the active fraction by SDS-PAGE revealed two major bands at marker levels of approximately 16 kDa (ToxA) and 50 kDa (ToxB). Mass spectrometry analysis followed by MASCOT analysis revealed that both proteins had similarity to hypothetical proteins of V. parahaemolyticus M0605 (contig034 GenBank accession no. JALL01000066.1) and similarity to known binary insecticidal toxins called ''Photorhabdus insect related'' proteins A and B (Pir-A and Pir-B), respectively, produced by the symbiotic, nematode bacterium Photorhabdus luminescens. In in vivo tests, it was shown that recombinant ToxA and ToxB were both required in a dose dependent manner to cause AHPND pathology, indicating further similarity to Pir-A and -B. A single-step PCR method was designed for detection of the ToxA gene and was validated using 104 bacterial isolates consisting of 51 VPAHPND isolates, 34 non-AHPND VP isolates and 19 other isolates of bacteria commonly found in shrimp ponds (including other species of Vibrio and Photobacterium). The results showed 100% specificity and sensitivity for detection of VPAHPND isolates in the test set.  相似文献   

7.
Vibrio parahaemolyticus has been recognized as the causal agent of early mortality syndrome and is currently considered an emerging shrimp disease causing losses of millions in the aquaculture industry. Integral membrane proteins are widely recognized as pathogenicity factors involved in essential mechanisms for V. parahaemolyticus infection, which makes them attractive as therapeutic targets. However, their physico‐chemical properties and weak expression has resulted in under‐representation of these proteins in conventional bottom‐up proteomics, making integral membrane proteomics a challenging task. Integral membrane proteins from a bacterial strain isolated from the hepatopancreases of white shrimp with early mortality syndrome and identified by 16S rRNA sequencing as V. parahaemolyticus and an ATCC strain that is pathogenic for humans were obtained by a sequential extraction method and subjected to relative quantification and identification by isobaric Tags for Relative and Absolute Quantitation. A homology database search resulted in identification of more than two hundred proteins, 35 of which are recognized as pathogenic factors showed statistically significant differential accumulation between the strains. These proteins are mainly associated with adherence, secretion systems, cell division, transport, lysogenization, movement and virulence. Identification of pathogenicity‐related proteins in V. parahaemolyticus provides valuable information for developing strategies based on molecular mechanisms that inhibit these proteins, which may be useful therapeutic targets for assisting the shrimp and aquaculture industry.  相似文献   

8.
9.
Acute hepatopancreatic necrosis disease (AHPND) outbreaks in cultured shrimps were identified in Zhangpu, China. One Vibrio parahaemolyticus strain PB1937 was isolated from the cultured shrimps and was confirmed as a causative agent of the AHPND outbreak by employing Koch’s four postulates. Challenge tests with 106 cells ml?1 of strain PB1937 caused 100% mortality of shrimps, indicating it had sufficient virulence to cause the outbreak. Phylogenomic analysis revealed a clear divergence between PB1937 and 14 publicly available V. parahaemolyticus strains and divided 11 AHPND-causing strains into six genomic clusters. Prophage profiling of above strains revealed strong correlations with their genomic relationship, while Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) were almost absent in the genomes. The binary toxin gene pirABvp directly related to the development of AHPND was found in a 70-kb plasmid p1937-1 in PB1937 but was absent in a 78-kb novel plasmid p1937-2, which shared 46% sequence similarity with p1937-1. Comparative genomic analysis revealed that PB1937 has a novel truncated type VI secretion system (T6SS1) which possibly affects its antibacterial activity. In addition, three novel genomic islands were reported. The analysis of the genomes gave some clues regarding the correlation of virulence with its genomic trait for the AHPND strains.  相似文献   

10.
Aims: The current study was aimed to develop a loop‐mediated isothermal amplification (LAMP) combined with amplicon detection by chromatographic lateral flow dipstick (LFD) assay for rapid and specific detection of Vibrio parahaemolyticus. Methods and Results: Biotinylated LAMP amplicons were produced by a set of four designed primers that recognized specifically the V. parahaemolyticus thermolabile haemolysin (tlh) gene followed by hybridization with an FITC‐labelled probe and LFD detection. The optimized time and temperature conditions for the LAMP assay were 90 min at 65°C. The LAMP–LFD method accurately identified 28 isolates of V. parahaemolyticus but did not detect 24 non‐parahaemolyticus Vibrio isolates and 35 non‐Vibrio bacterial isolates. The sensitivity of LAMP–LFD for V. parahaemolyticus detection in pure cultures was 120 CFU ml?1. In the case of spiked shrimp samples without enrichment, the detection limit for V. parahaemolyticus was 1·8 × 103 CFU g?1 or equivalent to 3 CFU per reaction while that of conventional PCR was 30 CFU per reaction. Conclusions: The established LAMP–LFD assay targeting tlh gene was specific, rapid and sensitive for identification of V. parahaemolyticus. Significance and Impact of the Study: The developed LAMP–LFD assay provided a valuable tool for detection of V. parahaemolyticus and can be used effectively for identification of V. parahaemolyticus in contaminated food sample.  相似文献   

11.
Vibrio parahaemolyticus is the most common cause of bacterial, seafood‐related illness in the USA. Currently, there is a dearth of published reports regarding immunity to infection with this pathogen. Here, production of both pro‐ and anti‐inflammatory cytokines by V. parahaemolyticus‐infected RAW 264.7 murine macrophages was studied. It was determined that this infection results in increased concentrations of IL‐1α, IL‐6, TNF‐α and IL‐10. Additionally, decreases in cell surface TLR2 and TLR4 and increases in T‐cell co‐stimulatory molecules CD40 and CD86 were discovered. The data presented here begin to identify the immune variables required to eliminate V. parahaemolyticus from infected host tissues.  相似文献   

12.
Vibrio parahaemolyticus is a natural microflora of marine and coastal water bodies and associated with mortality of larval shrimp in penaeid shrimp in ponds. Bacteriophages occur virtually in all places where their hosts exist. In this study, total distribution of V. parahaemolyticus and its phages were examined in shrimp ponds, seawater, estuary, animal surface, and tissues. Total vibrio count in sediments of two ponds was found to be 2.6 × 103 and 5.6 × 103 cfu/g. Incidence of V. parahaemolyticus in the ponds was close, while it was markedly higher in the animal surface and tissue samples. Biochemically identified eight strains of V. parahaemolyticus (V1, V3–V6, V9, V11, and V12) were taken for further infection studies with bacteriophage. Totally five bacteriophages capable of infecting V. parahaemolyticus MTCC-451 strain were isolated from all the samples. One of the isolated bacteriophage Vp1 from estuary was able to lyse all the isolated V. parahaemolyticus strains we used. Therefore, the morphology of Vp1 was estimated in TEM. Vp1 phage head measuring approximately about 50–60 nm diameter with icosahedral outline and a contractile tails of diameter 7 nm and length 100 nm and it was identified as Myoviridae. Therefore, the phages have the potential application in destroying bacterial pathogens.  相似文献   

13.
Aims: Vibrio parahaemolyticus is a significant cause of human gastrointestinal disorders and is transmitted through ingestion of raw or undercooked contaminated seafood. We used the groEL gene for the species‐specific detection of V. parahaemolyticus from artificially inoculated shellfish, fish and seawater. Methods and Results: The nucleotide sequences of 24 Vibrio and seven non‐Vibrio spp. were compared, and less conserved regions were selected for the designing of primer sets. To detect V. parahaemolyticus specifically, PCR conditions were standardized and tested to evaluate the specificity of primers. A 510‐bp band was appeared only from V. parahaemolyticus by PCR. Notably, the detection was shown to be functional at high annealing temperature above 68°C. The groEL primers detected 100 pg and 1 ng of DNA purified from V. parahaemolyticus culture and artificially infected oyster tissue, respectively. Conclusions: The groEL gene is a potential marker for the species‐specific detection of V. parahaemolyticus and could be used to detect this bacterium in contaminated food by PCR. Significance and Impact of the Study: PCR using primers designed from groEL gene provide an efficient method for the accurate identification of V. parahaemolyticus from contaminated samples.  相似文献   

14.
15.
Aim: To evaluate the diversity of Vibrio anguillarum isolates from vibriosis‐infected Penaeus monodon collected from east coast of India. Methods and Results: Thirty‐six V. anguillarum were cultured from specific V. anguillarum medium, further identified using biochemical tests and confirmed by PCR detection of rpoN gene. Randomly amplified polymorphic DNA analysis revealed that in each location, the selected V. anguillarum isolates produced a unique band pattern, indicating that the members of this species are genetically heterogeneous. Antibiotic sensitivity results showed that 85%, 72%, 70%, 58%, 45% and 34% of the isolates were resistant to erythromycin, furazolidone, chloramphenicol, oxolinic acid, ciprofloxacin and nitrofurantoin, respectively. Plasmids were found in 70% of the isolates, and nine different plasmid profiles were observed. Conclusions: Wide ranges of diversity were noted in V. anguillarum isolates collected from P. monodon at different locations of east coast of India. Significance and Impact of the Study: Molecular typing, antibiotic resistance and plasmid profiles of V. anguillarum isolates from shrimp in India enables the prediction of possible risk for diseases in shrimp culture environment and the application of alternative management plans to prevent further spread of antibiotic resistance.  相似文献   

16.
Because biochemical testing and 16S rRNA sequence analysis have proven inadequate for the differentiation of Vibrio parahaemolyticus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic probe. The gyrB genes of V. parahaemolyticus and closely related Vibrio alginolyticus were cloned and sequenced. Oligonucleotide PCR primers were designed for the amplification of a 285-bp fragment from within gyrB specific for V. parahaemolyticus. These primers recognized 117 of 117 reference and wild-type V. parahaemolyticus strains, whereas amplification did not occur when 90 strains of 37 other Vibrio species or 60 strains representing 34 different nonvibrio species were tested. In 100-μl PCR mixtures, the lower detection limits were 5 CFU for live cells and 4 pg for purified DNA. The possible application of gyrB primers for the routine identification of V. parahaemolyticus in food was examined. We developed and tested a procedure for the specific detection of the target organism in shrimp consisting of an 18-h preenrichment followed by PCR amplification of the 285-bp V. parahaemolyticus-specific fragment. This method enabled us to detect an initial inoculum of 1.5 CFU of V. parahaemolyticus cells per g of shrimp homogenate. By this approach, we were able to detect V. parahaemolyticus in all of 27 shrimp samples artificially inoculated with this bacterium. We present here a rapid, reliable, and sensitive protocol for the detection of V. parahaemolyticus in shrimp.  相似文献   

17.
Shrimp, water, and sediment samples were collected from various shrimp farms located in and around Cochin. V. parahaemolyticus was identified by standard biochemical tests and plasmid profiling was carried out for the isolates. Susceptibility was tested against 15 antibiotics before and after the plasmid curing. Incidence of V. parahaemolyticus was found in 46% of the samples screened. Antibiogram studies showed, above 50% of the strains sensitive to chlorotetracycline, chloramphenicol and nitrofurantoin. Multiple antibiotic resistance (MAR) index was found to be 0.2. Total presumptive Vibrio parahaemolyticus count (TPVPC) and resistance to antibiotics was found to be more in sediment samples particularly in pre-monsoon season. Plasmid profiles of V. parahaemolyticus isolates revealed seven plasmids in the size range of 0.75, 1.2, 6.0, and 8.0 kb sizes and 3 plasmids above 10.0 kb. The MAR index suggests the low risk potential involved in consuming seafoods. Resistance to antibiotics did not vary even after curing of plasmids with sodium dodecyl sulphate suggesting that resistance to antibiotics in V. parahaemolyticus is chromosomal borne.  相似文献   

18.
Use of formic acid to control vibriosis in shrimp aquaculture   总被引:1,自引:0,他引:1  
Derek Adams  Raj Boopathy 《Biologia》2013,68(6):1017-1021
Luminous vibriosis is a shrimp disease that causes major economic losses in shrimp industry as a result of massive shrimp kills due to bacterial infection caused by Vibrio species. Use of antibiotics to control Vibrio in shrimp aquaculture is not allowed in the United States and so it is necessary to develop an alternative pathogen control method for shrimp production. Short-chain fatty acids have been used as food preservatives for a long time. Organic acids are commonly added in feeds in animal production, such as chicken, pig, and cattle. In this study, growth inhibition effects of formic acid on five selected Vibrio species, namely Vibrio alginolyticus, Vibrio cholerae, Vibrio harveyi, Vibrio parahaemolyticus and Vibrio vulnificus were studied. The Vibrio bacteria were grown on both solid and liquid media using Muller-Hinton agar and alkaline peptone water, respectively, with various concentrations of formic acid. Bacterial growth was monitored in the liquid media using optical density method. The results showed significant inhibition of growth of all five Vibrio species by formic acid at low concentration. The effective concentration (EC50) values were calculated for all five Vibrio species, which were less than 0.039% of formic acid. The results are encouraging to supplement formic acid in the shrimp feed as a control mechanism to reduce Vibrio outbreak in shrimp aquaculture system.  相似文献   

19.
A clonal population of pathogenic Vibrio parahaemolyticus O3 : K6 serovar has spread in coastal waters, causing outbreaks worldwide since 1996. Bacteriophage infection is one of the main factors affecting bacterial strain concentration in the ocean. We studied the occurrence and properties of phages infecting this V. parahaemolyticus pandemic strain in coastal waters. Analysing 143 samples, phages were found in 13. All isolates clustered in a closely related group of podophages with at least 90% nucleotide sequence identity in three essential genes, despite distant geographical origins. These bacteriophages were able to multiply on the V. parahaemolyticus pandemic strain, but the impact on host concentration and subsequent growth was negligible. Infected bacteria continued producing the phage but were not lysogenized. The phage genome of prototype strain VP93 is 43 931 nucleotides and contains 337 bp direct terminal repeats at both ends. VP93 is the first non‐Pseudomonas phage related to the ΦKMV‐like subgroup of the T7 supergroup. The lack of a major effect on host growth suggests that these phages exert little control on the propagation of the pandemic strain in the environment. This form of phage growth can be modelled if phage‐sensitive and ‐resistant cells that convert to each other with a high frequency are present in clonal cultures of pandemic V. parahaemolyticus.  相似文献   

20.
Aim: To detect Aeromonas spp., Salmonella spp., Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus in mussels and water samples from a farming area, conventional and molecular methods were applied to enrichment cultures. Methods and Results: The aerolysin gene (aero) of Aeromonas spp., the invasion plasmid antigen B (ipaB) gene of Salmonella spp., the enterotoxin secretion protein (epsM) gene of V. cholerae, the species‐specific region of 16S rRNA gene of V. vulnificus, the 16S–23S rDNA (IGS) gene of V. parahaemolyticus and the pR72H fragment of V. parahaemolyticus were amplified by multiplex polymerase chain reaction (PCR) assays on DNA extracted from enrichment cultures. The haemolysin gene (tdh) of pathogenic V. parahaemolyticus was also amplified. Conventional culture method allowed the isolation of V. parahaemolyticus and V. vulnificus from water and mussels. The genes aero, epsM and 16S rRNA of V. vulnificus were occasionally detected in the enrichment cultures. In mussels, the ipaB and IGS genes were detected from June to September and from April to November, respectively. All genes, except aero, were amplified from mussels collected in September, when pathogenic V. parahaemolyticus (tdh+) strains were also isolated. Conclusions: Multiplex‐PCR assays were more sensitive and faster than conventional procedures. Significance and Impact of the Study: The results emphasize the need of an accurate and rapid detection of bacterial pathogens in mussels to protect human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号