首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
MicroRNAs (miRNAs) play a pivotal role in carcinogenesis. Dysregulation of miRNAs, both oncogenic miRNAs and tumour‐suppressive miRNAs, is closely associated with cancer development and progression. The levels of miRNAs could be changed epigenetically by DNA methylation in the 5′ untranslated region (UTR) of pre‐mature miRNAs. To investigate whether DNA methylation alters the expression of miR‐129 in lung cancer, we did DNA methylation assays and found that 5′ UTR region of miR‐129‐2 gene was absolutely methylated in both A549 and SPCA‐1 lung cancer cells, but totally un‐methylated in 95‐D cells. The expression of miR‐129 was restored by 5‐Aza‐2'‐deoxycytidine (DAC), a de‐methylation agent, in both A549 and SPCA‐1 cells, resulting in attenuated cell migration and invasion ability, and decreased protein level of NF‐κB, which indicates the involvement of NF‐κB pathway. To further illustrate the roles of miR‐129 in lung tumourigenesis, we overexpressed miR‐129 in lung cancer cells by transfection of miR‐129 mimics, and found arrested cell proliferation at G2/M phase of cell cycle and inhibited cell invasion. These findings strongly suggest that miR‐129 is a tumour suppressive miRNA, playing important roles in the development and progression of human lung cancer.  相似文献   

3.
Wilms' tumor, also known as nephroblastoma, is a kind of pediatric renal cancer. Previous studies have indicated that microRNAs (miRNAs) regulate various cancers progression. However, whether miR‐200 family regulated Wilms' tumor progression remains to be elucidated. In our study, miR‐200b/c/429 expression was downregulated in Wilms' tumor tissue samples from 25 patients. And data from three independent analyses of quantitative real‐time polymerase chain reaction revealed that the expression of miR‐200b/c/429 was downregulated in Wilms' tumor cell lines. Functionally, Cell counting kit‐8 assay revealed that cell viability was reduced by overexpressing miR‐200b/c/429. Transwell assay manifested that cell migration and invasion was hindered by miR‐200b/c/429 overexpression. Sphere‐forming and western blot assays demonstrated that miR‐200b/c/429 overexpression suppressed the sphere formation ability. Mechanically, nuclear factor‐κB (NF‐κB) pathway was confirmed to be associated with Wilms' tumor progression; miR‐200b/c/429 overexpression inactivated NF‐κB pathway as miR‐200b/c/429 was identified to target IκB kinase β (IKK‐β), an NF‐κB pathway‐related gene. Moreover, miR‐200b/c/429 was sponged by LINC00667 in Wilms' tumor cells. LINC00667 competitively bound with miR‐200b/c/429 to regulate IKK‐β expression and then activated NF‐κB pathway in Wilms' tumor. Subsequently, rescue assays illustrated that silencing of IKK‐β could reverse the effect of miR‐200b/c/429 inhibition on the progression of sh‐LINC00667‐transfected Wilms' tumor cells. In summary, LINC00667 promoted Wilms' tumor progression by sponging miR‐200b/c/429 family to regulate IKK‐β.  相似文献   

4.
5.
Whether dendritic cell (DC) derived exosomes play a role in the progression of endothelial inflammation and atherosclerosis remains unclear. Using a transwell system and exosome release inhibitor GW4869, we demonstrated that mature DCs contributed to endothelial inflammation and exosomes were involved in the process. To further confirm this finding, we isolated exosomes from bone marrow dendritic cell (BMDC) culture medium (named DC‐exos) and stimulated human umbilical vein endothelial cell (HUVEC) with these DC‐exos. We observed that mature DC‐exos increased HUVEC inflammation through NF‐κB pathway in a manner similar to that of lipopolysaccharide. After a protein array analysis of exosomes, we identified and confirmed tumour necrosis factor (TNF)‐α on exosome membrane being the trigger of NF‐κB pathway in HUVECs. We then performed an in vivo study and found that the aorta endothelial of mice could uptake intravenously injected exosomes and was activated by these exosomes. After a period of 12 weeks of mature DC‐exos injection into ApoE?/? mice, the atherosclerotic lesions significantly increased. Our study demonstrates that mature DCs derived exosomes increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. This finding extends our knowledge on how DCs affect inflammation and provides a potential method to prevent endothelial inflammation and atherosclerosis.  相似文献   

6.
Cullin‐RING‐ubiquitin‐ligase (CRL)‐dependent ubiquitination of the nuclear factor kappa B (NF‐κB) inhibitor IκBα and its subsequent degradation by the proteasome usually precede NF‐κB/RelA nuclear activity. Through removal of the CRL‐activating modification of their cullin subunit with the ubiquitin (Ub)‐like modifier NEDD8, the COP9 signalosome (CSN) opposes CRL Ub‐ligase activity. While RelA phosphorylation was observed to mediate NF‐κB activation independent of Ub‐proteasome‐pathway (UPP)‐dependent turnover of IκBα in some studies, a strict requirement of the p97/VCP ATPase for both, IκBα degradation and NF‐κB activation, was reported in others. In this study, we thus aimed to reconcile the mechanism for tumour necrosis factor (TNF)‐induced NF‐κB activation. We found that inducible phosphorylation of RelA is accomplished in an IKK‐complex‐dependent manner within the NF‐κB/RelA‐IκBα‐complex contemporaneous with the phosphorylation of IκBα, and that RelA phosphorylation is not sufficient to dissociate NF‐κB/RelA from IκBα. Subsequent to CRL‐dependent IκBα ubiquitination functional p97/VCP is essentially required for efficient liberation of (phosphorylated) RelA from IκBα, preceding p97/VCP‐promoted timely and efficient degradation of IκBα as well as simultaneous NF‐κB/RelA nuclear translocation. Collectively, our data add new facets to the knowledge about maintenance of IκBα and RelA expression, likely depending on p97/VCP‐supported scheduled basal NF‐κB activity, and the mechanism of TNF‐induced NF‐κB activation.  相似文献   

7.
HOXA cluster antisense RNA 2 (HOXA‐AS2) is a long noncoding RNA associated with the development of numerous cancers. But, whether HOXA‐AS2 exhibits a certain function in sepsis‐engendered acute kidney injury (AKI) remains uninvestigated. We strived to unveil the role of HOXA‐AS2 in sepsis‐engendered AKI. The expression of HOXA‐AS2 in sepsis patients, animal models and lipopolysaccharide (LPS)‐impaired HK‐2 cells was primarily assessed via a real‐time quantitative polymerase chain reaction. The effects of HOXA‐AS2 on cell survival of HK‐2 cells under LPS irritation were evaluated after overexpression of HOXA‐AS2. The correlation between HOXA‐AS2 and microRNA (miR)‐106b‐5p was forecasted via bioinformatics software and verified by using a luciferase report system. Subsequently, the functions of miR‐106b‐5p in LPS‐damaged HK‐2 cells were reassessed. Western blot was used for the determination of Wnt/β‐catenin and nuclear factor‐κB (NF‐κB) pathways. HOXA‐AS2 expression was decreased in sepsis patients, animal operation group and LPS‐irritated HK‐2 cells. Overexpressed HOXA‐AS2 mollified LPS‐triggered impairment in HK‐2 cells. In addition, a negative mediatory relation between HOXA‐AS2 and miR‐106b‐5p was predicated. Synchronously, overexpressed miR‐106b‐5p counteracted the protection of HOXA‐AS2 in LPS‐damaged HK‐2 cells. Ultimately, Wnt/β‐catenin and NF‐κB pathways were hindered by HOXA‐AS2 via targeting miR‐106b‐5p. HOXA‐AS2 exhibited protection in sepsis‐engendered AKI via targeting miR‐106b‐5p and hindering the Wnt/β‐catenin and NF‐κB pathways.  相似文献   

8.
This study was designed to investigate whether ANRIL affected the aetiology of coronary artery disease (CAD) by acting on downstream miR‐181b and NF‐κB signalling. Altogether 327 CAD patients diagnosed by angiography were included, and mice models of CAD were established. Human coronary endothelial cells (HCAECs) and human umbilical vein endothelial cells (HUVECs) were also purchased. In addition, shRNA‐ANRIL, shRNA‐NC, pcDNA3.1‐ANRIL, miR‐181b mimic, miR‐181b inhibitor and miR‐NC were transfected into the cells. The lipopolysaccharides (LPS) and pyrrolidine dithiocarbamate (PDTC) were also added to activate or deactivate NF‐κB signalling. Both highly expressed ANRIL and lowly expressed miR‐181b were associated with CAD population aged over 60 years old, with smoking history, with hypertension and hyperlipidemia, with CHOL H 4.34 mmol/L, TG ≥ 1.93 mmol/L and Hcy ≥ 16.8 μmol/L (all P < 0.05). Besides, IL‐6, IL‐8, NF‐κB, TNF‐α, iNOS, ICAM‐1, VCAM‐1 and COX‐2 expressions observed within AD mice models were all beyond those within NC and sham‐operated groups (P < 0.05). Also VEGF and HSP 70 were highly expressed within AD mice models than within NC and sham‐operated mice (P < 0.05). Transfection of either pcDNA‐ANRIL or miR‐181b inhibitor could significantly fortify HCAECs’ viability and put on their survival rate. At the meantime, the inflammatory factors and vascular‐protective parameters were released to a greater level (P < 0.05). Finally, highly expressed ANRIL also notably bring down miR‐181b expression and raise p50/p65 expressions within HCAECs (P < 0.05). The joint role of ANRIL, miR‐181b and NF‐κB signalling could aid in further treating and diagnosing CAD.  相似文献   

9.
10.
11.
Late‐stage hepatocellular carcinoma (HCC) usually has a low survival rate because of the high risk of metastases and the lack of an effective cure. Disulfiram (DSF) has copper (Cu)‐dependent anticancer properties in vitro and in vivo. The present work aims to explore the anti‐metastasis effects and molecular mechanisms of DSF/Cu on HCC cells both in vitro and in vivo. The results showed that DSF inhibited the proliferation, migration and invasion of HCC cells. Cu improved the anti‐metastatic activity of DSF, while Cu alone had no effect. Furthermore, DSF/Cu inhibited both NF‐κB and TGF‐β signalling, including the nuclear translocation of NF‐κB subunits and the expression of Smad4, leading to down‐regulation of Snail and Slug, which contributed to phenotype epithelial–mesenchymal transition (EMT). Finally, DSF/Cu inhibited the lung metastasis of Hep3B cells not only in a subcutaneous tumour model but also in an orthotopic liver metastasis assay. These results indicated that DSF/Cu suppressed the metastasis and EMT of hepatic carcinoma through NF‐κB and TGF‐β signalling. Our study indicates the potential of DSF/Cu for therapeutic use.  相似文献   

12.
Curcumin treatment was reported to delay the progression of OA, but its underlying mechanism remains unclear. In this study, we aimed to investigate the molecular mechanism underlying the role of curcumin in OA treatment. Accordingly, by conducting MTT and flow cytometry assays, we found that the exosomes derived from curcumin‐treated MSCs helped to maintain the viability while inhibiting the apoptosis of model OA cells. Additionally, quantitative real‐time PCR and Western blot assays showed that the exosomes derived from curcumin‐treated MSCs significantly restored the down‐regulated miR‐143 and miR‐124 expression as well as up‐regulated NF‐kB and ROCK1 expression in OA cells. Mechanistically, curcumin treatment decreased the DNA methylation of miR‐143 and miR‐124 promoters. In addition, the 3’ UTRs of NF‐kB and ROCK1 were proven to contain the binding sites for miR‐143 and miR‐124, respectively. Therefore, the up‐regulation of miR‐143 and miR‐124 in cellular and mouse OA models treated with exosomes remarkably restored the normal expression of NF‐kB and ROCK1. Consequently, the progression of OA was attenuated by the exosomes. Our results clarified the molecular mechanism underlying the therapeutic role of MSC‐derived exosomes in OA treatment.  相似文献   

13.
Abnormal hyperplasia of fibroblast‐like synoviocytes (FLS) leads to the progression of rheumatoid arthritis (RA). This study aimed to investigate the role of miR‐124a in the pathogenesis of RA. The viability and cell cycle of FLS in rheumatoid arthritis (RAFLS) were evaluated by Cell Counting Kit 8 and flow cytometry assay. The expression of PIK3CA, Akt, and NF‐κB in RAFLS was examined by real‐time PCR and Western blot analysis. The production of tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 was detected by ELISA. The joint swelling and inflammation in collagen‐induced arthritis (CIA) mice were examined by histological and immunohistochemical analysis. We found that miR‐124a suppressed the viability and proliferation of RAFLS and increased the percentage of cells in the G1 phase. miR‐124a suppressed PIK3CA 3'UTR luciferase reporter activity and decreased the expression of PIK3CA at mRNA and protein levels. Furthermore, miR‐124a inhibited the expression of the key components of the PIK3/Akt/NF‐κB signal pathway and inhibited the expression of pro‐inflammatory factors TNF‐α and IL‐6. Local overexpression of miR‐124a in the joints of CIA mice inhibited inflammation and promoted apoptosis in FLS by decreasing PIK3CA expression. In conclusion, miR‐124a inhibits the proliferation and inflammation in RAFLS via targeting PIK3/NF‐κB pathway. miR‐124a is a promising therapeutic target for RA.  相似文献   

14.
Asian ginseng (AG) is the most commonly used medicinal herb in Asian countries. It is often prescribed for cancer patients as a complementary remedy. However, whether AG in fact benefits cancer patients remains unknown because some studies reported that AG facilitates tumor growth, which contradicts its usage as a dietary remedy to cancer patients. In addition, most of research works on ginseng for anti‐cancer were using single ginsenoside rather than whole root extracts used in clinics. Thus, intensive studies using the type of ginseng as its clinical form are necessary to validate its benefits to cancer patients. In this study, anti‐tumor potency and underlying molecular mechanisms of the ethanol extract of AG (EAG) were examined in mice with Lewis lung carcinoma (LLC‐1). We showed that EAG significantly suppressed tumor growth in LLC‐1‐bearing mice with concomitant down‐regulation of PCNA proliferative marker, and it exhibited specific cytotoxicity to cancer cells. EAG also induced MAPK and p53 signaling in LLC‐1 cells, which suppressed cyclin B–cdc2 complex and in turn induced G2–M arrest and apoptosis. Although EAG could activate NF‐κB signaling, the proteasome inhibitor of MG‐132 could effectively prevent NF‐κB targeted gene expression induced by EAG and then sensitize LLC‐1 cells to induce EAG‐mediated apoptosis. Collectively, EAG in a relatively high dose significantly suppressed tumor growth in LLC‐1‐bearing mice, indicating that AG may benefit lung cancer patients as a dietary supplement. This is the first report demonstrating possible combination of EAG with proteasome inhibitors could be a novel strategy in anti‐cancer treatment. J. Cell. Biochem. 111: 899–910, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Tissue engineered materials for clinical purposes have led to the development of in vitro models as alternatives to animal testing. The aim of this study was to understand the paracrine interactions arising between keratinocytes and fibroblasts for detecting and discriminating between an irritant‐induced inflammatory reaction and cytotoxicy. We used two irritants [sodium dodecyl sulphate (SDS) and potassium diformate (Formi®)] at sub‐toxic concentrations and studied interleukin‐1 alpha (IL‐1α) release from human keratinocytes and activation of NF‐κB in human fibroblasts. NF‐κB activation in fibroblast 2D cultures required soluble factors released by prior incubation of keratinocytes with either SDS or Formi®. Neither cell type responded directly to either agent, confirming a paracrine mechanism. Fibroblasts were then cultured in 3D microfiber scaffolds and transfected with an NF‐κB reporter construct linked to GFP. Findings for 3D cultures were similar to those in 2D in that soluble factors released by prior incubation of keratinocytes with SDS or Formi® was required for NF‐κB activation in fibroblasts. Similarly, direct incubation with either agent did not directly activate NF‐κB. A technical advantage of using transfected cells in 3D was an ability to detect NF‐κB activation in live fibroblasts. To confirm paracrine signaling a twofold increase in IL‐1α was measured in keratinocyte‐conditioned medium after incubation with SDS or Formi®, which correlated with fibroblast NF‐κB activity. In summary, this work has value for developing 3D tissue engineered co‐culture models for the in vitro testing of irritant chemicals at sub‐toxic concentrations, as an alternative to in vivo models. Biotechnol. Bioeng. 2010;106: 794–803. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Idiopathic pulmonary fibrosis (IPF) is an aging‐associated disease with poor prognosis. Currently, there are no effective drugs for preventing the disease process. The mechanisms underlying the role of alveolar epithelial cell (AEC) senescence in the pathogenesis of IPF remain poorly understood. We aimed to explore whether PTEN/NF‐κB activated AEC senescence thus resulting in lung fibrosis. First, we investigated the association between the activation of PTEN/NF‐κB and cellular senescence in lung tissues from IPF patients. As a result, decreased PTEN, activated NF‐κB and increased senescent markers (P21WAF1, P16ink4a, and SA‐β‐gal) were found in AECs in fibrotic lung tissues detected by immunohistochemistry (IHC) and immunofluorescence (IF). In vitro experiments showed increased expression levels of senescent markers and augmented senescence‐associated secretory phenotype (SASP) in AECs treated with bleomycin (Blm); however, PTEN was reduced significantly following IκB, IKK, and NF‐κB activation after stimulation with Blm in AECs. AEC senescence was accelerated by PTEN knockdown, whereas senescence was reversed via NF‐κB knockdown and the pharmacological inhibition (BMS‐345541) of the NF‐κB pathway. Interestingly, we observed increased collagen deposition in fibroblasts cultured with the supernatants collected from senescent AECs. Conversely, the deposition of collagen in fibroblasts was reduced with exposure to the supernatants collected from NF‐κB knockdown AECs. These findings indicated that senescent AECs controlled by the PTEN/NF‐κB pathway facilitated collagen accumulation in fibroblasts, resulting in lung fibrosis. In conclusion, our study supports the notion that as an initial step in IPF, the senescence process in AECs may be a potential therapeutic target, and the PTEN/NF‐κB pathway may be a promising candidate for intervention.  相似文献   

17.
18.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
The purpose of this study was to figure out the effect of ciRS‐7/miR‐7/NF‐κB axis on the development of non‐small cell lung cancer (NSCLC). In response, the expressions of ciRS‐7, miR‐7 and NF‐κB subunit (ie RELA) within NSCLC tissues and cell lines were determined with real‐time polymerase chain reaction (RT‐PCR) and Western blot. Moreover, the NSCLC cells were transfected with pcDNA3‐ciRS‐7‐ir, pcDNA3‐ciRS‐7, miR‐NC and miR‐7 mimic. Furthermore, the targeted relationships between ciRS‐7 and miR‐7, as well as between miR‐7 and RELA, were confirmed by luciferase reporter assay. The proliferation, migration and apoptosis of NSCLC cells were, successively, measured using CCK‐8 assay, wound‐healing assay and flow cytometry test. Consequently, ciRS‐7, miR‐7, histopathological grade, lymph node metastasis and histopathological stage could independently predict the prognosis of patients with NSCLC (all P < .05). Moreover, remarkably up‐regulated ciRS‐7 and RELA expressions, as along with down‐regulated miR‐7 expressions, were found within NSCLC tissues and cells in comparison with normal ones (P < .05). Besides, overexpressed ciRS‐7 and underexpressed miR‐7 were correlated with increased proliferation, migration and invasion, yet reduced apoptosis rate of NSCLC cells (P < .05). More than that, ciRS‐7 specifically targeted miR‐7 to reduce its expressions (P < .05). Ultimately, the NSCLC cells within miR‐7 + RELA group were observed with superior proliferative, migratory and invasive capabilities than those within miR‐7 group (P < .05), and RELA expression was also significantly modified by both ciRS‐7 and miR‐7 (P < .05). In conclusion, the ciRS‐7/miR‐7/NF‐kB axis could exert pronounced impacts on the proliferation, migration, invasion and apoptosis of NSCLC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号