首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Lim S  Choi SH  Shin H  Cho BJ  Park HS  Ahn BY  Kang SM  Yoon JW  Jang HC  Kim YB  Park KS 《PloS one》2012,7(4):e35007

Background

Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms.

Methods and Findings

Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline) and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group). Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR) in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP) and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs) demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs.

Conclusions

Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes.  相似文献   

2.
The presence of H3K9me3 and heterochromatin protein 1 (HP1) are hallmarks of heterochromatin conserved in eukaryotes. The spreading and maintenance of H3K9me3 is effected by the functional interplay between the H3K9me3-specific histone methyltransferase Suv39h1 and HP1. This interplay is complex in mammals because the three HP1 isoforms, HP1α, β, and γ, are thought to play a redundant role in Suv39h1-dependent deposition of H3K9me3 in pericentric heterochromatin (PCH). Here, we demonstrate that despite this redundancy, HP1α and, to a lesser extent, HP1γ have a closer functional link to Suv39h1, compared to HP1β. HP1α and γ preferentially interact in vivo with Suv39h1, regulate its dynamics in heterochromatin, and increase Suv39h1 protein stability through an inhibition of MDM2-dependent Suv39h1-K87 polyubiquitination. The reverse is also observed, where Suv39h1 increases HP1α stability compared HP1β and γ. The interplay between Suv39h1 and HP1 isoforms appears to be relevant under genotoxic stress. Specifically, loss of HP1α and γ isoforms inhibits the upregulation of Suv39h1 and H3K9me3 that is observed under stress conditions. Reciprocally, Suv39h1 deficiency abrogates stress-dependent upregulation of HP1α and γ, and enhances HP1β levels. Our work defines a specific role for HP1 isoforms in regulating Suv39h1 function under stress via a feedback mechanism that likely regulates heterochromatin formation.  相似文献   

3.
4.

Background

Diabetes exacerbates abnormal vascular smooth muscle cell (VSMC) accumulation in response to arterial wall injury. Vinpocetine has been shown to improve vascular remolding; however, little is known about the direct effects of vinpocetine on vascular complications mediated by diabetes. The objective of this study was to determine the effects of vinpocetine on hyperglycemia-facilitated neointimal hyperplasia and explore its possible mechanism.

Materials and Methods

Nondiabetic and diabetic rats were subjected to balloon injury of the carotid artery followed by 3-week treatment with either vinpocetine (10 mg/kg/day) or saline. Morphological analysis and proliferating cell nuclear antigen (PCNA) immunostaining were performed on day 21. Rat VSMCs proliferation was determined with 5-ethynyl-20-deoxyuridine cell proliferation assays. Chemokinesis was monitored with scratch assays, and production of reactive oxygen species (ROS) was assessed using a 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) flow cytometric assay. Apoptosis was detected by annexin V-FITC/PI flow cytometric assay. Cell signaling was assessed by immunblotting.

Results

Vinpocetine prevented intimal hyperplasia in carotid arteries in both normal (I/M ratio: 93.83 ± 26.45% versus 143.2 ± 38.18%, P<0.05) and diabetic animals (I/M ratio: 120.5 ± 42.55% versus 233.46 ± 33.98%, P<0.05) when compared to saline. The in vitro study demonstrated that vinpocetine significantly inhibited VSMCs proliferation and chemokinesis as well as ROS generation and apoptotic resistance, which was induced by high glucose (HG) treatment. Vinpocetine significantly abolished HG-induced phosphorylation of Akt and JNK1/2 without affecting their total levels. For downstream targets, HG-induced phosphorylation of IκBα was significantly inhibited by vinpocetine. Vinpocetine also attenuated HG-enhanced expression of PCNA, cyclin D1 and Bcl-2.

Conclusions

Vinpocetine attenuated neointimal formation in diabetic rats and inhibited HG-induced VSMCs proliferation, chemokinesis and apoptotic resistance by preventing ROS activation and affecting MAPK, PI3K/Akt, and NF-κB signaling.  相似文献   

5.
Insulin resistance associated with Type 2 diabetes contributes to impaired vasorelaxation and therefore contributes to the enhanced incidence of hypertension observed in diabetes. In this study, we examined the role of insulin on the association of the myosin-binding subunit of myosin phosphatase (MYPT1) to myosin phosphatase Rho-interacting protein (MRIP), a relatively novel member of the myosin phosphatase complex that directly binds RhoA in vascular smooth muscle cells (VSMCs). Through a series of molecular and cellular studies, we investigated whether insulin stimulates the binding of MRIP to MYPT1 and compared the results generated from VSMCs isolated from both Wistar-Kyoto (WKY) control and Goto-Kakizaki (GK) diabetic rats. We demonstrate for the first time that insulin stimulates the binding of MRIP to MYPT1 in a dose- and time-dependent manner, as determined by immunoprecipitation, implying a regulatory role for MRIP in insulin-induced vasodilation signaling via MYPT1 interaction. VSMCs from GK model of Type 2 diabetes had impaired insulin-induced MRIP/MYPT1 binding as well as reduced MRIP expression. Adenovirus-mediated overexpression of MRIP in GK VSMCs led to significantly improved insulin-stimulated MRIP/MYPT1 binding. Finally, insulin-stimulated MRIP translocation out of stress fibers, which was observed in control VSMCs, was impaired in GK VSMCs. We believe the impaired expression of MRIP, and therefore decreased insulin-stimulated MRIP/MYPT1 association, in the GK diabetic model may contribute to the impaired insulin-mediated vasodilation observed in the diabetic vasculature and provides a novel therapeutic strategy for the treatment of Type 2 diabetes.  相似文献   

6.
Oxidative stress has been implicated in several steps leading to the development of diabetic vascular complications. The purpose of this study was to determine the efficacy and the possible mechanism of puerarin on high-glucose (HG; 25 mM)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a carotid arterial balloon injury model of obese Zucker rats. Our data demonstrated that puerarin significantly inhibited rat VSMC proliferation as well as reactive oxygen species (ROS) generation and NADPH oxidase activity induced by HG treatment. Further studies revealed that HG treatment resulted in phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits, leading to NADPH oxidase activation. Puerarin treatment remarkably disrupted the phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits. Blocking PKCβ2 by infection with AdDNPKCβ2 also abolished HG-induced phosphorylation and membrane translocation of Rac1, p47phox, and p67phox subunits as well as ROS production and NADPH oxidase activation in VSMCs. In vivo neointimal formation of obese Zucker rats evoked by balloon injury was evidently attenuated by the administration of puerarin. These results demonstrate that puerarin may exert inhibitory effects on HG-induced VSMC proliferation via interfering with PKCβ2/Rac1-dependent ROS pathways, thus resulting in the attenuation of neointimal formation in the context of hyperglycemia in diabetes mellitus.  相似文献   

7.
8.
Type 2 diabetes (T2D) is associated with accelerated restenosis rates after angioplasty. We have previously proved that Pin1 played an important role in vascular smooth muscle cell (VSMC) cycle and apoptosis. But neither the role of Pin1 in restenosis by T2D, nor the molecular mechanism of Pin1 in these processes has been elucidated. A mouse model of T2D was generated by the combination of high‐fat diet (HFD) and streptozotocin (STZ) injections. Both Immunohistochemistry and Western blot revealed that Pin1 expression was up‐regulated in the arterial wall in T2D mice and in VSMCs in culture conditions mimicking T2D. Next, increased activity of Pin1 was observed in neointimal hyperplasia after arterial injury in T2D mice. Further analysis confirmed that 10% serum of T2D mice and Pin1‐forced expression stimulated proliferation, inhibited apoptosis, enhanced cell cycle progression and migration of VSMCs, whereas Pin1 knockdown resulted in the converse effects. We demonstrated that STAT3 signalling and mitochondria‐dependent pathways played critical roles in the involvement of Pin1 in cell cycle regulation and apoptosis of VSMCs in T2D. In addition, VEGF expression was stimulated by Pin1, which unveiled part of the mechanism of Pin1 in regulating VSMC migration in T2D. Finally, the administration of juglone via pluronic gel onto injured common femoral artery resulted in a significant inhibition of the neointima/media ratio. Our findings demonstrated the vital effect of Pin1 on the VSMC proliferation, cell cycle progression, apoptosis and migration that underlie neointima formation in T2D and implicated Pin1 as a potential therapeutic target to prevent restenosis in T2D.  相似文献   

9.
Many patients with ischaemic heart disease also have diabetes. As myocardial infarction is a major cause of mortality and morbidity in these patients, treatments that increase cell survival in response to ischaemia and reperfusion are needed. Exosomes—nano‐sized, lipid vesicles released from cells—can protect the hearts of non‐diabetic rats. We previously showed that exosomal HSP70 activates a cardioprotective signalling pathway in cardiomyocytes culminating in ERK1/2 and HSP27 phosphorylation. Here, we investigated whether the exosomal cardioprotective pathway remains intact in the setting of type II diabetes. Exosomes were isolated by differential centrifugation from non‐diabetic and type II diabetic patients, from non‐diabetic and Goto Kakizaki type II diabetic rats, and from normoglycaemic and hyperglycaemic endothelial cells. Exosome size and number were not significantly altered by diabetes. CD81 and HSP70 exosome markers were increased in diabetic rat exosomes. However, exosomes from diabetic rats no longer activated the ERK1/2 and HSP27 cardioprotective pathway and were no longer protective in a primary rat cardiomyocytes model of hypoxia and reoxygenation injury. Hyperglycaemic culture conditions were sufficient to impair protection by endothelial exosomes. Importantly, however, exosomes from non‐diabetic rats retained the ability to protect cardiomyocytes from diabetic rats. Exosomes from diabetic plasma have lost the ability to protect cardiomyocytes, but protection can be restored with exosomes from non‐diabetic plasma. These results support the concept that exosomes may be used to protect cardiomyocytes against ischaemia and reperfusion injury, even in the setting of type II diabetes.  相似文献   

10.
11.
Erectile dysfunction (ED) is a common comorbidity in males with diabetes. In this study, we aimed to investigate how lncRNA-MIAT affects ED in diabetes and the involved mechanism. Microarray analysis was performed to screen ED-related differentially expressed genes, regulatory microRNA (miR) and long noncoding RNA (lncRNA). Highly expressed lipoprotein lipase (LPL) was identified, and subsequently miR-328a-5p and lncRNA-MIAT were determined. Diabetes was induced by streptozotocin in rats, and diabetic rats with ED were selected. Vascular smooth muscle cells (VSMCs) and vascular endothelial cells (VECs) were cocultured. The siRNA against lncRNA-MIAT, miR-328a-5p mimic and overexpression vector of LPL were transfected to investigate the specific effects of miR-328a-5p, lncRNA-MIAT and LPL on ED in diabetes. The expression of LPL, lncRNA-MIAT and miR-328a-5p in the serum of diabetic patients was measured. Increased LPL and lncRNA-MIAT and reduced miR-328a-5p were observed in diabetic patients. In addition, ED led to upregulated LPL and lncRNA-MIAT and downregulated miR-328a-5p in serum of diabetic patients and VSMCs of diabetic rats, especially in those with ED. LncRNA-MIAT directly regulated miR-328a-5p, which directly targeted LPL. LncRNA-MIAT upregulated LPL by acting as a ceRNA of miR-328a-5p. Silencing of lncRNA-MIAT and LPL or miR-328a-5p overexpression reduced VEC apoptosis and increased cell proliferation. In addition, an increased intracavernosal pressure (ICP)/mean arterial pressure (MAP) ratio was noted in the corpus cavernosum of rats and inhibited VEC injury. Taken together, our data demonstrated that depleted lncRNA-MIAT suppressed LPL by increasing miR-328a-5p, thereby inhibiting VEC injury to attenuate ED in diabetic rats.  相似文献   

12.
High glucose-induced proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the development of diabetic vascular diseases. However, molecular mediators responding for the proliferation of VSMCs remain to be determined. In this study, VSMCs were isolated from the rat thoracic aorta, and two cell models with Irf-1 knockdown and overexpression were established by transfecting cells with pGCsi-FU-Irf-1 and pGC-FU-Irf-1, respectively. Subsequently, high glucose was added to cells to induce proliferation. Proliferation assays were performed to see whether Irf-1 was involved in high glucose-induced proliferation of VSMCs. In addition, the expression of Irf-1 was detected in VSMCs stimulated with high glucose and the thoracic aorta of diabetic rats to confirm the relationship between Irf-1 expression and the proliferation of hyperglycemia-dependent VSMCs. The results showed that Irf-1 expression was significantly higher in the thoracic aorta of diabetic rats and VSMCs stimulated with high glucose than that in nondiabetic rats and untreated cells. Overexpression of Irf-1 accelerated the proliferation of VSMCs, and down-regulation of Irf-1 expression significantly depressed the proliferative ability of VSMCs under high-glucose conditions, indicating that Irf-1 was a positive regulator for high glucose-induced proliferation of VSMCs. It could be presumed that Irf-1 is associated with the accelerated proliferation of VSMCs in diabetic vascular diseases and may prove to be a potential target gene for disease treatment.  相似文献   

13.
Inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) is upregulated in arterial injury and plays a role in regulating VSMC proliferation and restenosis. Inflammatory cytokines [e.g., interleukin-1beta (IL-1beta)] released during vascular injury induce iNOS. Small GTP-binding proteins of the Ras superfamily play a major role in IL-1beta-dependent signaling pathways. In this study, we examined the role of Rho GTPases in regulating iNOS expression in VSMCs. Treatment of VSMCs with mevastatin, which inhibits isoprenylation of Rho and other small GTP-binding proteins, produced significantly higher amounts of IL-1beta-evoked NO and iNOS protein compared with control. Similarly, bacterial toxins [Toxin B from Clostridium difficile and C3 ADP-ribosyl transferase (C3) toxin from Clostridium botulinium] that specifically inactivate Rho proteins increased NOS products (NO and citrulline) and iNOS expression. Toxin B increased the activity of iNOS promoter-reporter construct in VSMCs. Both toxins enhanced IL-1beta-stimulated iNOS expression and NO production. These data demonstrate for the first time that inhibition of Rho induces iNOS and suggest a role for Rho protein in IL-1beta-stimulated NO production in VSMCs.  相似文献   

14.
Ouyang P  Peng LS  Yang H  Peng WL  Wu WY  Xu AL 《生理学报》2003,55(2):128-134
研究观察了重组人白介素10(rhIL-l0)对晚期糖基化终产物(AGE)刺激下离体大鼠胸主动脉血管平滑肌细胞增殖及对SD大鼠血管损伤后新生内膜增殖的影响。体外培养大鼠主动脉血管平滑肌细胞,采用MTS/PES法确定血管平滑肌细胞的增殖状态;应用流式细胞术测定细胞周期;利用p44/42磷酸化抗MAPK抗体的蛋白免疫印迹法测定p44/42 MAPK磷酸化蛋白表达。利用大鼠颈动脉血管损伤模型,观察rhIL—10对新生内膜增殖的影响。结果显示:(1)AGE处理组与对照组相比,AGE对血管平滑肌细胞增殖具有明显的刺激作用(P<0.05)。rhIL-l0单独应用对血管平滑肌细胞生长没有影响(P>0.05)。在AGE刺激下,低至100ng/ml的rhIL-l0可抑制血管平滑肌细胞的生长(P<0.05)。(2)流式细胞术测定的结果显示,rhIL—10可以使AGE作用下的VSMC大部分处于Go/G1期,与对照组相比有明显差异(P<0.01)。(3)AGE对p44/p42 MAPK磷酸化蛋白表达有显著的增强作用,此作用可被rhIL—10抑制(P<0.001)。(4)大鼠颈动脉损伤后,rhIL—10治疗组的动脉血管新生内膜/中层面积比低于对照组约45%(P<0.01)。表明抗炎细胞因子rhIL—10可抑制AGE诱导的大鼠血管平滑肌细胞增殖和血管新生内膜的增殖。  相似文献   

15.
The regulation of vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis plays a clear role in the atherosclerotic process. Recently, we reported on the inhibition of the exaggerated growth phenotype of VSMCs isolated from hypertensive rats by lipocalin-type prostaglandin D2 synthase (L-PGDS). In the present study, we report the differential effects of L-PGDS on VSMC cell cycle progression, migration, and apoptosis in wild-type VSMCs vs. those from a type 2 diabetic model. In wild-type VSMCs, exogenously added L-PGDS delayed serum-induced cell cycle progression from the G1 to S phase, as determined by gene array analysis and the decreased protein expressions of cyclin-dependent kinase-2, p21Cip1, and cyclin D1. Cyclin D3 protein expression was unaffected by L-PGDS, although its gene expression was stimulated by L-PGDS in wild-type cells. In addition, platelet-derived growth factor-induced VSMC migration was inhibited by L-PGDS in wild-type cells. Type 2 diabetic VSMCs, however, were resistant to the L-PGDS effects on cell cycle progression and migration. L-PGDS did suppress the hyperproliferation of diabetic cells, albeit through a different mechanism, presumably involving the 2.5-fold increase in apoptosis and the concomitant 10-fold increase of L-PGDS uptake we observed in these cells. We propose that in wild-type VSMCs, L-PGDS retards cell cycle progression and migration, precluding hyperplasia of the tunica media, and that diabetic cells appear resistant to the inhibitory effects of L-PGDS, which consequently may help explain the increased atherosclerosis observed in diabetes. apoptosis; atherosclerosis; insulin resistance  相似文献   

16.
17.
Vascular smooth muscle cells (VSMCs) proliferation is involved in vascular atherosclerosis and restenosis. Recent studies have demonstrated that lipopolysaccharide (LPS) promotes VSMCs proliferation, but the signalling pathways which are involved are not completely understood. The purpose of this review was to summarize the existing knowledge of the role and molecular mechanisms involved in controlling VSMCs proliferation stimulated by LPS and mediated by toll‐like receptor 4 (TLR4) signalling pathways. Moreover, the potential inhibitors of TLR4 signalling for VSMCs proliferation in proliferative vascular diseases are discussed.  相似文献   

18.
Vascular remodeling is characterized by the aggregation of vascular smooth muscle cells (VSMCs) in intima. Previous studies have demonstrated that dehydroepiandrosterone (DHEA), a steroid hormone, can reverse vascular remodeling. However, it is still far clear that whether and how DHEA participates in the modulation of VSMCs activation and vascular remodeling. VSMCs were obtained from the thoracic aorta of SD rats. Cell proliferation was evaluated by CCK-8 assay and BrdU assay. To measure VSMCs migration activity, a transwell chamber assay was performed. Quantitative real-time RT-PCR and western blot were used to explore the molecular mechanisms. ROS generation by VSMCs was measured by DCF fluorescence. NADPH oxidase activity and SOD activity were measured by the corresponding kits. NF-κB activity was detected by NF-κB luciferase reporter gene assay. A rat carotid artery balloon injury model was built to evaluate the neointimal formation, and plasma PGF2 was measured by ELISA. Our results showed that DHEA significantly inhibited VSMCs proliferation after angiotensin (Ang II) stimulation by down-regulation of NADPH oxidase activity and ERK1/2 phosphorylation. Ang II can increase IL-6 and MCP-1 expression, but DHEA reverses these changes via inhibiting p38-MAPK/NF-κB (p65) signaling pathway. DHEA has no significant effects on VSMCs phenotype transition, but can reduce the neointimal to media area ratio after balloon injury. DHEA can alleviate oxidative stress and inflammation in VSMCs via ERK1/2 and NF-κB signaling pathway, but has no effect on VSMCs phenotype transition. Furthermore, DHEA attenuates VSMCs activation and neointimal formation after carotid injury in vivo. Taken together, DHEA might be a promising treatment for vascular injury under pathological condition.  相似文献   

19.

Background

Atherosclerosis is a complex pathological condition caused by a number of mechanisms including the accelerated proliferation of vascular smooth muscle cells (VSMCs). Diabetes is likely to be an important risk factor for atherosclerosis, as hyperglycemia induces vascular smooth muscle cell (VSMC) proliferation and migration and may thus contribute to the formation of atherosclerotic lesions. This study was performed to investigate whether PGC-1α, a PPARγ coactivator and metabolic master regulator, plays a role in regulating VSMC proliferation and migration induced by high glucose.

Methodology/Principal Findings

PGC-1α mRNA levels are decreased in blood vessel media of STZ-treated diabetic rats. In cultured rat VSMCs, high glucose dose-dependently inhibits PGC-1α mRNA expression. Overexpression of PGC-1α either by infection with adenovirus, or by stimulation with palmitic acid, significantly reduces high glucose-induced VSMC proliferation and migration. In contrast, suppression of PGC-1α by siRNA mimics the effects of glucose on VSMCs. Finally, mechanistic studies suggest that PGC-1α-mediated inhibition of VSMC proliferation and migration is regulated through preventing ERK1/2 phosphorylation.

Conclusions/Significance

These results indicate that PGC-1α is a key regulator of high glucose-induced proliferation and migration in VSMCs, and suggest that elevation of PGC-1α in VSMC could be a useful strategy in preventing the development of diabetic atherosclerosis.  相似文献   

20.
Aortic stiffening is an independent risk factor that underlies cardiovascular morbidity in the elderly. We have previously shown that intrinsic mechanical properties of vascular smooth muscle cells (VSMCs) play a key role in aortic stiffening in both aging and hypertension. Here, we test the hypothesis that VSMCs also contribute to aortic stiffening through their extracellular effects. Aortic stiffening was confirmed in spontaneously hypertensive rats (SHRs) vs. Wistar‐Kyoto (WKY) rats in vivo by echocardiography and ex vivo by isometric force measurements in isolated de‐endothelized aortic vessel segments. Vascular smooth muscle cells were isolated from thoracic aorta and embedded in a collagen I matrix in an in vitro 3D model to form reconstituted vessels. Reconstituted vessel segments made with SHR VSMCs were significantly stiffer than vessels made with WKY VSMCs. SHR VSMCs in the reconstituted vessels exhibited different morphologies and diminished adaptability to stretch compared to WKY VSMCs, implying dual effects on both static and dynamic stiffness. SHR VSMCs increased the synthesis of collagen and induced collagen fibril disorganization in reconstituted vessels. Mechanistically, compared to WKY VSMCs, SHR VSMCs exhibited an increase in the levels of active integrin β1‐ and bone morphogenetic protein 1 (BMP1)‐mediated proteolytic cleavage of lysyl oxidase (LOX). These VSMC‐induced alterations in the SHR were attenuated by an inhibitor of serum response factor (SRF)/myocardin. Therefore, SHR VSMCs exhibit extracellular dysregulation through modulating integrin β1 and BMP1/LOX via SRF/myocardin signaling in aortic stiffening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号