首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dental stem cell proliferation and osteoblast differentiation are key cellular processes involved in periodontitis diseases. Researchers have found that SIRT1 (sirtuin 1, silent mating type information regulation 2 homolog 1) and microRNAs play a pivotal role in the process, but a clear underlying mechanism has not been determined. In this study, the has‐miR‐22‐3p that target SIRT1 was predicted by TargetScan. Luciferase reporter assay was used to confirm that SIRT1 is the direct target of miR‐22‐3p. Importantly, miR‐22‐3p was revealed to control SIRT1 in periodontal ligament stem cell (PDLSC) and to regulate the proliferation and differentiation of PDLSC by SIRT1 silencing. Furthermore, we detected the induction of miR‐22‐3p expression by nicotinamide treatment on PDLSC. Induction of PDLSC proliferation and differentiation by nicotinamide treatment was blocked by miR‐22‐3p knockdown. These results suggested that the effect of nicotinamide on PDLSC is through miR‐22‐3p. In addition, miR‐22‐3p also upregulated the expression levels of the inflammatory cytokines tumor necrosis factor‐α, interleukin‐1β (IL‐1β), and IL‐8 in PDLSC through SIRT1 pathway and downregulated the expression of TLR‐2 and TLR‐4. miR‐22‐3p is a new target either for the treatment of periodontitis or the improvement of inflammation caused by orthodontics.  相似文献   

3.
MicroRNAs (miRNAs) play a pivotal role in carcinogenesis. Dysregulation of miRNAs, both oncogenic miRNAs and tumour‐suppressive miRNAs, is closely associated with cancer development and progression. The levels of miRNAs could be changed epigenetically by DNA methylation in the 5′ untranslated region (UTR) of pre‐mature miRNAs. To investigate whether DNA methylation alters the expression of miR‐129 in lung cancer, we did DNA methylation assays and found that 5′ UTR region of miR‐129‐2 gene was absolutely methylated in both A549 and SPCA‐1 lung cancer cells, but totally un‐methylated in 95‐D cells. The expression of miR‐129 was restored by 5‐Aza‐2'‐deoxycytidine (DAC), a de‐methylation agent, in both A549 and SPCA‐1 cells, resulting in attenuated cell migration and invasion ability, and decreased protein level of NF‐κB, which indicates the involvement of NF‐κB pathway. To further illustrate the roles of miR‐129 in lung tumourigenesis, we overexpressed miR‐129 in lung cancer cells by transfection of miR‐129 mimics, and found arrested cell proliferation at G2/M phase of cell cycle and inhibited cell invasion. These findings strongly suggest that miR‐129 is a tumour suppressive miRNA, playing important roles in the development and progression of human lung cancer.  相似文献   

4.
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR‐1‐3p and miR‐206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR‐1‐3p and miR‐206 can overcome HGF‐induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR‐1‐3p and miR‐206 restored the sensitivities of lung cancer cells PC‐9 and HCC‐827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR‐1‐3p and miR‐206 directly target HGF receptor c‐Met in lung cancer. Knockdown of c‐Met mimicked the effects of miR‐1‐3p and miR‐206 transfections Meanwhile, c‐Met overexpression attenuated the effects of miR‐1‐3p and miR‐206 in HGF‐induced gefitinib resistance of lung cancers. Furthermore, we showed that miR‐1‐3p and miR‐206 inhibited c‐Met downstream Akt and Erk pathway and blocked HGF‐induced epithelial‐mesenchymal transition (EMT). Finally, we demonstrated that miR‐1‐3p and miR‐206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR‐1‐3p and miR‐206 in overcoming HGF‐induced gefitinib resistance in EGFR mutant lung cancer cell.  相似文献   

5.
The purpose of this study was to figure out the effect of ciRS‐7/miR‐7/NF‐κB axis on the development of non‐small cell lung cancer (NSCLC). In response, the expressions of ciRS‐7, miR‐7 and NF‐κB subunit (ie RELA) within NSCLC tissues and cell lines were determined with real‐time polymerase chain reaction (RT‐PCR) and Western blot. Moreover, the NSCLC cells were transfected with pcDNA3‐ciRS‐7‐ir, pcDNA3‐ciRS‐7, miR‐NC and miR‐7 mimic. Furthermore, the targeted relationships between ciRS‐7 and miR‐7, as well as between miR‐7 and RELA, were confirmed by luciferase reporter assay. The proliferation, migration and apoptosis of NSCLC cells were, successively, measured using CCK‐8 assay, wound‐healing assay and flow cytometry test. Consequently, ciRS‐7, miR‐7, histopathological grade, lymph node metastasis and histopathological stage could independently predict the prognosis of patients with NSCLC (all P < .05). Moreover, remarkably up‐regulated ciRS‐7 and RELA expressions, as along with down‐regulated miR‐7 expressions, were found within NSCLC tissues and cells in comparison with normal ones (P < .05). Besides, overexpressed ciRS‐7 and underexpressed miR‐7 were correlated with increased proliferation, migration and invasion, yet reduced apoptosis rate of NSCLC cells (P < .05). More than that, ciRS‐7 specifically targeted miR‐7 to reduce its expressions (P < .05). Ultimately, the NSCLC cells within miR‐7 + RELA group were observed with superior proliferative, migratory and invasive capabilities than those within miR‐7 group (P < .05), and RELA expression was also significantly modified by both ciRS‐7 and miR‐7 (P < .05). In conclusion, the ciRS‐7/miR‐7/NF‐kB axis could exert pronounced impacts on the proliferation, migration, invasion and apoptosis of NSCLC cells.  相似文献   

6.

Objectives

Long non‐coding RNAs have identified to involve into the tumour cell proliferation, apoptosis and metastasis. We previously found that up‐regulated LncRNA‐SNHG7 (SNHG7) positively correlated to the Fas apoptosis inhibitory molecule 2 (FAIM2) in lung cancer cells with unclear mechanism.

Methods

Non‐small cell lung cancer (NSCLC) and relative normal tissues (n = 25) were collected. The SNHG7 expression and function in NSCLC was determined. The SNHG7‐miR 193b‐FAIM2 network was analysed in vitro and vivo.

Results

We reported that oncogene SNHG7 predicted a poor clinical outcome and functioned as competitive endogenous RNA (ceRNA) antagonized microRNA‐193b (miR‐193b) to up‐regulate the FAIM2 level in NSCLC. Bioinformatic analysis predicted that SNHG7 harboured miR‐193b‐binding sites, and we found decreased miR‐193b levels in NSCLC tissues when compared to relative normal tissues. Luciferase assays indicated that overexpression of miR‐193b inhibited the Ruc expression of plasmid with miR‐193b‐binding sites of SNHG7 in a dose‐dependent manner. Ectopically expressed SNHG7 also as a molecular sponge sequestered endogenous miR‐193b. Besides, FAIM2 was found to be directly targeted by miR‐193b. The restoration of miR‐193b levels in NSCLC cell lines A549 and H125 suppressed the expression of FAIM2 and related tumour proliferation, metastasis and induced apoptosis. However, forced expression of SNHG7 could down‐regulate miR‐193b to elevate the FAIM2 level of tumour cells, leading to impaired miR‐193b/FAIM2‐induced tumour progression. Knockdown of SNHG7 in vivo significantly delayed the tumour growth with decreased tumour volume, which accompanied with enhanced miR‐193b expression and reduced FAIM2 levels.

Conclusion

The results indicated that miR‐193b is indispensible for the ceRNA role of SNHG7 in FAIM2‐supported tumourigenesis of lung cancer.  相似文献   

7.
8.
9.
10.
More and more studies indicate the relevance of miRNAs in inducing certain drug resistance. Our study aimed to investigate whether microRNA‐130b‐3p (miR‐130b) mediates the chemoresistance as well as proliferation of lung cancer (LC) cells. MTS assay and apoptosis analysis were conducted to determine cell proliferation and apoptosis, respectively. Binding sites were identified using a luciferase reporter system, whereas mRNA and protein expression of target genes was determined by RT‐PCR and immunoblot, respectively. Mouse xenograft model was used to evaluate the role of miR‐130b in cisplatin resistance in vivo. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR ) versus its parental cell lines, indicated its crucial relevance for LC biology. We identified PTEN as miR‐130b's major target and inversely correlated with miR‐130b expression in LC. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. Suppression of miR‐130b enhanced drug cytotoxicity and reduced proliferation of A549/CR cells both internally and externally. Particularly, miR‐130b mediated Wnt/β‐catenin signalling pathway activities, chemoresistance and proliferation in LC cell, which was partially blocked following knockdown of PTEN. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway. The rising level of miR‐130b in cisplatin resistance LC cell lines (A549/CR and H446/CR) versus its parental cell lines, indicated its crucial relevance for LC biology. Moreover, excessive miR‐130b expression promoted drug resistance and proliferation, decreased apoptosis of A549 cells. These findings suggest that miR‐130b targets PTEN to mediate chemoresistance, proliferation, and apoptosis via Wnt/β‐catenin pathway.  相似文献   

11.
Non–small‐cell lung cancer (NSCLC) is the most common cause of death from cancer worldwide. MicroRNAs (miRNAs) are a group of important regulators in NSCLC, including miR‐198. However, the underlying molecular mechanisms of miR‐198 involvement in intrinsic resistance to radiotherapy in NSCLC remain to be elucidated. In this study, to investigate the clinical significance of miR‐198 in NSCLC in relation to the response to radiotherapy, we determined the expression patterns of miR‐198 between responders and nonresponders after 2 months of radiotherapy and found that decreased expressions of miR‐198 were associated with radiotherapy resistance. In addition, we altered the endogenous miR‐198 using mimics or inhibitors to examine the effects of miR‐198 on 4‐Gy–irradiated A549 and SPCA‐1 cells in vitro. Upregulating miR‐198 was shown to inhibit cell proliferation, migration, and invasion and induce apoptosis. MiR‐198 inhibition produced a reciprocal result. PHA665752, a selective small‐molecule c‐Met inhibitor, potently inhibited hepatocyte growth factor (HGF)‐stimulated and constitutive c‐Met phosphorylation and rescued 4‐Gy–irradiated A549 and SPCA‐1 cells from miR‐198 inhibition. Most importantly, we established tumor xenografts of 4‐Gy–irradiated A549 and SPCA‐1 cells in nude mice and found that miR‐198 could suppress tumor formation. Hence, our data delineates the molecular pathway by which miR‐198 inhibits NSCLC cellular proliferation and induces apoptosis following radiotherapy, providing a novel target aimed at improving the radiotherapeutic response in NSCLC.  相似文献   

12.
Long non‐coding RNAs (lncRNAs) have emerged as new and important regulators of pathological processes including tumour development. In this study, we demonstrated that differentiation antagonizing non‐protein coding RNA (DANCR) was up‐regulated in lung adenocarcinoma (ADC) and that the knockdown of DANCR inhibited tumour cell proliferation, migration and invasion and restored cell apoptosis rescued; cotransfection with a miR‐496 inhibitor reversed these effects. Luciferase reporter assays showed that miR‐496 directly modulated DANCR; additionally, we used RNA‐binding protein immunoprecipitation (RIP) and RNA pull‐down assays to further confirm that the suppression of DANCR by miR‐496 was RISC‐dependent. Our study also indicated that mTOR was a target of miR‐496 and that DANCR could modulate the expression levels of mTOR by working as a competing endogenous RNA (ceRNA). Furthermore, the knockdown of DANCR reduced tumour volumes in vivo compared with those of the control group. In conclusion, this study showed that DANCR might be an oncogenic lncRNA that regulates mTOR expression through directly binding to miR‐496. DANCR may be regarded as a biomarker or therapeutic target for ADC.  相似文献   

13.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

14.
Atrial fibrosis serves as an important contributor to atrial fibrillation (AF). Recent data have suggested that microRNA‐30c (miR‐30c) is involved in fibrotic remodelling and cancer development, but the specific role of miR‐30c in atrial fibrosis remains unclear. The purpose of this study was to investigate the role of miR‐30c in atrial fibrosis and its underlying mechanisms through in vivo and in vitro experiments. Our results indicate that miR‐30c is significantly down‐regulated in the rat abdominal aortic constriction (AAC) model and in the cellular model of fibrosis induced by transforming growth factor‐β1 (TGF‐β1). Overexpression of miR‐30c in cardiac fibroblasts (CFs) markedly inhibits CF proliferation, differentiation, migration and collagen production, whereas decrease in miR‐30c leads to the opposite results. Moreover, we identified TGFβRII as a target of miR‐30c. Finally, transferring adeno‐associated virus 9 (AAV9)‐miR‐30c into the inferior vena cava of rats attenuated fibrosis in the left atrium following AAC. These data indicate that miR‐30c attenuates atrial fibrosis via inhibition of CF proliferation, differentiation, migration and collagen production by targeting TGFβRII, suggesting that miR‐30c might be a novel potential therapeutic target for preventing atrial fibrosis.  相似文献   

15.
miR‐9 has been reported to play a pivotal role in multiple human cancers by acting as an oncogene or tumor suppressor. In this study, we explored the possible role and molecular mechanism of miR‐9 in multiple myeloma (MM). The miR‐9 expression was examined by quantitative real‐time polymerase chain reaction assay. Transfection with miR‐9‐mimics, miR‐9‐inhibitor, pcDNA‐TRIM56, or si‐TRIM56 into cells was used to change the expression levels of miR‐9 and TRIM56. Western blot analysis was used to detect the expression of TRIM56, p65, p‐p65, IκBα, and p‐IκBα. The potential target of miR‐9 was confirmed by luciferase reporter assay. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium (MTT) assay, colony formation assay, and flow cytometry were used to assess the abilities of cell proliferation and apoptosis. miR‐9 was upregulated in MM patients and cell lines, and miR‐9 overexpression promoted proliferation and repressed apoptosis in MM cell lines. TRIM56 was confirmed as a target of miR‐9. Moreover, TRIM56 reversed miR‐9‐mediated pro‐proliferation and anti‐apoptosis effect on MM cell lines. Furthermore, nuclear factor‐κB (NF‐κB) pathway was involved in miR‐9/TRIM56‐mediated regulation on MM cell lines. miR‐9 promoted the development and progression of MM by regulating TRIM56/NF‐κB pathway, thereby providing a potential microRNA‐based target for MM therapy.  相似文献   

16.
Lipopolysaccharide (LPS)‐induced pulmonary fibrosis is characterized by aberrant proliferation and activation of lung fibroblasts. Epigenetic regulation of thymocyte differentiation antigen 1 (Thy‐1) is associated with lung fibroblast phenotype transformation that results in aberrant cell proliferation. However, it is not clear whether the epigenetic regulation of Thy‐1 expression is required for LPS‐induced lung fibroblast proliferation. To address this issue and better understand the relative underlying mechanisms, we used mouse lung fibroblasts as model to observe the changes of Thy‐1 expression and histone deacetylation after LPS challenge. The results showed that cellular DNA synthesis, measured by BrdU incorporation, was impacted less in the early stage (24 hrs) after the challenge of LPS, but significantly increased at 48 or 72 hrs after the challenge of LPS. Meanwhile, Thy‐1 expression, which was detected by real‐time PCR and Western blot, in lung fibroblasts decreased with increased time after LPS challenge and diminished at 72 hrs. We also found that the acetylation of either histone H3 or H4 decreased in the LPS‐challenged lung fibroblasts. ChIP assay revealed that the acetylation of histone H4 (Ace‐H4) decreased in the Thy‐1 promoter region in response to LPS. In addition, all the above changes could be attenuated by depletion of TLR4 gene. Our studies indicate that epigenetic regulation of Thy‐1 gene expression by histone modification is involved in LPS‐induced lung fibroblast proliferation.  相似文献   

17.
18.
The present study investigated the role of long non‐coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in the human aortic smooth muscle cell (HASMC) proliferation and migration and explored the potential link between SNHG16 and atherosclerosis. Our results showed that platelet‐derived growth factor (PDGF)‐bb treatment promoted cell proliferation and migration with concurrent up‐regulation of SNHG16 in HASMCs. Small nucleolar RNA host gene 16 overexpression promoted HASMC proliferation and migration, while SNHG16 knockdown suppressed cell proliferation and migration in PDGF‐bb‐stimulated HASMCs. The bioinformatic analyses showed that SNHG16 possessed the complementary binding sequence with miR‐205, where the interaction was confirmed by luciferase reporter assay and RNA pull‐down assay in HASMCs, and SNHG16 inversely regulated miR‐205 expression. MiR‐205 overexpression attenuated the enhanced effects of PDGF‐bb treatment on HASMC proliferation and migration. Moreover, Smad2 was targeted and inversely regulated by miR‐205, while being positively regulated by SNHG16 in HASMCs. Smad2 knockdown attenuated PDGF‐bb‐mediated actions on HASMC proliferation and migration. Both miR‐205 overexpression and Smad2 knockdown partially reversed the effects of SNHG16 overexpression on HASMC proliferation and migration. Moreover, SNHG16 and Smad2 mRNA were up‐regulated, while miR‐205 was down‐regulated in the plasma from patients with atherosclerosis. Small nucleolar RNA host gene 16 expression was inversely correlated with miR‐205 expression and positively correlated with Smad2 expression in the plasma from atherosclerotic patients. In conclusion, our data showed the up‐regulation of SNHG16 in pathogenic‐stimulated HASMCs and clinical samples from atherosclerotic patients. Small nucleolar RNA host gene 16 regulated HASMC proliferation and migration possibly via regulating Smad2 expression by acting as a competing endogenous RNA for miR‐205.  相似文献   

19.
Atrial fibrillation (AF) is the most common type of arrhythmia in cardiovascular diseases. Atrial fibrosis is an important pathophysiological contributor to AF. This study aimed to investigate the role of the clustered miR‐23b‐3p and miR‐27b‐3p in atrial fibrosis. Human atrial fibroblasts (HAFs) were isolated from atrial appendage tissue of patients with sinus rhythm. A cell model of atrial fibrosis was achieved in Ang‐II‐induced HAFs. Cell proliferation and migration were detected. We found that miR‐23b‐3p and miR‐27b‐3p were markedly increased in atrial appendage tissues of AF patients and in Ang‐II‐treated HAFs. Overexpression of miR‐23b‐3p and miR‐27b‐3p enhanced the expression of collagen, type I, alpha 1 (COL1A1), COL3A1 and ACTA2 in HAFs without significant effects on their proliferation and migration. Luciferase assay showed that miR‐23b‐3p and miR‐27b‐3p targeted two different sites in 3?‐UTR of transforming growth factor (TGF)‐β1 receptor 3 (TGFBR3) respectively. Consistently, TGFBR3 siRNA could increase fibrosis‐related genes expression, along with the Smad1 inactivation and Smad3 activation in HAFs. Additionally, overexpression of TGFBR3 could alleviate the increase of COL1A1, COL3A1 and ACTA2 in HAFs after transfection with miR‐23b‐3p and miR‐27b‐3p respectively. Moreover, Smad3 was activated in HAFs in response to Ang‐II treatment and inactivation of Smad3 attenuated up‐regulation of miR‐23b‐3p and miR‐27b‐3p in Ang‐II‐treated HAFs. Taken together, these results suggest that the clustered miR‐23b‐3p and miR‐27b‐3p consistently promote atrial fibrosis by targeting TGFBR3 to activate Smad3 signalling in HAFs, suggesting that miR‐23b‐3p and miR‐27b‐3p are potential therapeutic targets for atrial fibrosis.  相似文献   

20.
Prostate cancer (PCa) is the second leading cause of cancer‐related death in males, primarily due to its metastatic potential. The present study aims to identify the expression of microRNA‐539 (miR‐539) in PCa and further investigate its functional relevance in PCa progression both in vitro and in vivo. Initially, microarray analysis was conducted to obtain the differentially expressed gene candidates and the regulatory miRNAs, after which the possible interaction between the two was determined. Next, ectopic expression and knock‐down of the levels of miR‐539 were performed in PCa cells to identify the functional role of miR‐539 in PCa pathogenesis, followed by the measurement of E‐cadherin, vimentin, Smad4, c‐Myc, Snail1 and SLUG expression, as well as proliferation, migration and invasion of PCa cells. Finally, tumour growth was evaluated in nude mice through in vivo experiments. The results found that miR‐539 was down‐regulated and DLX1 was up‐regulated in PCa tissues and cells. miR‐539 was also found to target and negatively regulate DLX1 expression, which resulted in the inhibition of the TGF‐β/Smad4 signalling pathway. Moreover, the up‐regulation of miR‐539 or DLX1 gene silencing led to the inhibition of PCa cell proliferation, migration, invasion, EMT and tumour growth, accompanied by increased E‐cadherin expression and decreased expression of vimentin, Smad4, c‐Myc, Snail1 and SLUG. In conclusion, the overexpression of miR‐539‐mediated DLX1 inhibition could potentially impede EMT, proliferation, migration and invasion of PCa cells through the blockade of the TGF‐β/Smad4 signalling pathway, highlighting a potential miR‐539/DLX1/TGF‐β/Smad4 regulatory axis in the treatment of PCa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号