首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Many major human pathogens are multihost pathogens, able to infect other vertebrate species. Describing the general patterns of host–pathogen associations across pathogen taxa is therefore important to understand risk factors for human disease emergence. However, there is a lack of comprehensive curated databases for this purpose, with most previous efforts focusing on viruses. Here, we report the largest manually compiled host–pathogen association database, covering 2,595 bacteria and viruses infecting 2,656 vertebrate hosts. We also build a tree for host species using nine mitochondrial genes, giving a quantitative measure of the phylogenetic similarity of hosts. We find that the majority of bacteria and viruses are specialists infecting only a single host species, with bacteria having a significantly higher proportion of specialists compared to viruses. Conversely, multihost viruses have a more restricted host range than multihost bacteria. We perform multiple analyses of factors associated with pathogen richness per host species and the pathogen traits associated with greater host range and zoonotic potential. We show that factors previously identified as important for zoonotic potential in viruses—such as phylogenetic range, research effort, and being vector‐borne—are also predictive in bacteria. We find that the fraction of pathogens shared between two hosts decreases with the phylogenetic distance between them. Our results suggest that host phylogenetic similarity is the primary factor for host‐switching in pathogens.  相似文献   

2.
Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropic Mycoplasma spp. (i.e., haemoplasmas) across a species‐rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and two‐thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare—but detectable—bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand cross‐species transmission and the epidemiological consequences of bacterial pathogens.  相似文献   

3.
Most emerging infectious diseases of humans are transmitted to humans from other animals. The transmission of these “zoonotic” pathogens is affected by the abundance and behavior of their wildlife hosts. However, the effects of infection with zoonotic pathogens on behavior of wildlife hosts, particularly those that might propagate through ecological communities, are not well understood. Borrelia burgdorferi is a bacterium that causes Lyme disease, the most common vector‐borne disease in the USA and Europe. In its North American range, the pathogen is most frequently transmitted among hosts through the bite of infected blacklegged ticks (Ixodes scapularis). Using sham and true vaccines, we experimentally manipulated infection load with this zoonotic pathogen in its most competent wildlife reservoir host, the white‐footed mouse, Peromyscus leucopus, and quantified the effects of infection on mouse foraging behavior, as well as levels of mouse infestation with ticks. Mice treated with the true vaccine had 20% fewer larval blacklegged ticks infesting them compared to mice treated with the sham vaccine, a significant difference. We observed a nonsignificant trend for mice treated with the true vaccine to be more likely to visit experimental foraging trays (20%–30% effect size) and to prey on gypsy moth pupae (5%–20% effect size) compared to mice treated with the sham vaccine. We observed no difference between mice on true‐ versus sham‐vaccinated grids in risk‐averse foraging. Infection with this zoonotic pathogen appears to elicit behavioral changes that might reduce self‐grooming, but other behaviors were affected subtly or not at all. High titers of B. burgdorferi in mice could elicit a self‐reinforcing feedback loop in which reduced grooming increases tick burdens and hence exposure to tick‐borne pathogens.  相似文献   

4.
Symbiotic bacterial communities can protect their hosts from infection by pathogens. Treatment of wild individuals with protective bacteria (probiotics) isolated from hosts can combat the spread of emerging infectious diseases. However, it is unclear whether candidate probiotic bacteria can offer consistent protection across multiple isolates of globally distributed pathogens. Here, we use the lethal amphibian fungal pathogen Batrachochytrium dendrobatidis to investigate whether probiotic richness (number of bacteria) or genetic distance among consortia members influences broad‐scale in vitro inhibitory capabilities of probiotics across multiple isolates of the pathogen. We show that inhibition of multiple pathogen isolates by individual bacteria is rare, with no systematic pattern among bacterial genera in ability to inhibit multiple B. dendrobatidis isolates. Bacterial consortia can offer stronger protection against B. dendrobatidis compared to single strains, and this tended to be more pronounced for consortia containing multiple genera compared with those consisting of bacteria from a single genus (i.e., with lower genetic distance), but critically, this effect was not uniform across all B. dendrobatidis isolates. These novel insights have important implications for the effective design of bacterial probiotics to mitigate emerging infectious diseases.  相似文献   

5.
In natural systems, host species are often co-infected by multiple pathogen species, and recent work has suggested that many pathogens can infect a wide range of host species. An important question therefore is what determines the host range of a pathogen and the community of pathogens found within a given host species. Using primates as a model, we show that infectious diseases are more often shared between species that are closely related and inhabit the same geographical region. We find that host relatedness is the best overall predictor of whether two host species share the same pathogens. A higher frequency of pathogen host shifts between close relatives or inheritance of pathogens from a common ancestor may explain this result. For viruses, geographical overlap among neighbouring primate hosts is more important in determining host range. We suggest this is because rapid evolution within viral lineages allows host jumps across larger evolutionary distances. We also show that the phylogenetic pattern of pathogen sharing with humans is the same as that between wild primates. For humans, this means we share a higher proportion of pathogens with the great apes, including chimpanzees and gorillas, because these species are our closest relatives.  相似文献   

6.
Chlamydiaceae are bacterial pathogens that cause diverse diseases in humans and animals. Despite their broad host and tissue tropism, all Chlamydia species share an obligate intracellular cycle of development and have evolved sophisticated mechanisms to interact with their eukaryotic host cells. Here, we have analysed interactions of the zoonotic pathogen Chlamydia psittaci with a human epithelial cell line. We found that C. psittaci recruits the ceramide transport protein (CERT) to its inclusion. Chemical inhibition and CRISPR/Cas9‐mediated knockout of CERT showed that CERT is a crucial factor for C. psittaci infections thereby affecting different stages of the infection including inclusion growth and infectious progeny formation. Interestingly, the uptake of fluorescently labelled sphingolipids in bacteria inside the inclusion was accelerated in CERT‐knockout cells indicating that C. psittaci can exploit CERT‐independent sphingolipid uptake pathways. Moreover, the CERT‐specific inhibitor HPA‐12 strongly diminished sphingolipid transport to inclusions of infected CERT‐knockout cells, suggesting that other HPA‐12‐sensitive factors are involved in sphingolipid trafficking to C. psittaci. Further analysis is required to decipher these interactions and to understand their contributions to bacterial development, host range, tissue tropism, and disease outcome.  相似文献   

7.
Zoonotic pathogens often infect several animal species, and gene flow among populations infecting different host species may affect the biological traits of the pathogen including host specificity, transmissibility and virulence. The bacterium Campylobacter jejuni is a widespread zoonotic multihost pathogen, which frequently causes gastroenteritis in humans. Poultry products are important transmission vehicles to humans, but the bacterium is common in other domestic and wild animals, particularly birds, which are a potential infection source. Population genetic studies of C. jejuni have mainly investigated isolates from humans and domestic animals, so to assess C. jejuni population structure more broadly and investigate host adaptation, 928 wild bird isolates from Europe and Australia were genotyped by multilocus sequencing and compared to the genotypes recovered from 1366 domestic animal and human isolates. Campylobacter jejuni populations from different wild bird species were distinct from each other and from those from domestic animals and humans, and the host species of wild bird was the major determinant of C. jejuni genotype, while geographic origin was of little importance. By comparison, C. jejuni differentiation was restricted between more phylogenetically diverse farm animals, indicating that domesticated animals may represent a novel niche for C. jejuni and thereby driving the evolution of those bacteria as they exploit this niche. Human disease is dominated by isolates from this novel domesticated animal niche.  相似文献   

8.
In this article, we summarize the major scientific developments of the last decade on the transmission of infectious agents in multi-host systems. Almost sixty percent of the pathogens that have emerged in humans during the last 30-40 years are of animal origin and about sixty percent of them show an important variety of host species besides humans (3 or more possible host species). In this review, we focus on zoonotic infections with vector-borne transmission and dissect the contrasting effects that a multiplicity of host reservoirs and vectors can have on their disease dynamics. We discuss the effects exerted by host and vector species richness and composition on pathogen prevalence (i.e., reduction, including the dilution effect, or amplification). We emphasize that, in multiple host systems and for vector-borne zoonotic pathogens, host reservoir species and vector species can exert contrasting effect locally. The outcome on disease dynamics (reduced pathogen prevalence in vectors when the host reservoir species is rich and increased pathogen prevalence when the vector species richness increases) may be highly heterogeneous in both space and time. We then ask briefly how a shift towards a more systemic perspective in the study of emerging infectious diseases, which are driven by a multiplicity of hosts, may stimulate further research developments. Finally, we propose some research avenues that take better into account the multi-host species reality in the transmission of the most important emerging infectious diseases, and, particularly, suggest, as a possible orientation, the careful assessment of the life-history characteristics of hosts and vectors in a community ecology-based perspective.  相似文献   

9.
Pathogenic Leptospira bacteria are the causative agents of leptospirosis, a zoonotic disease affecting animals and humans worldwide. These pathogenic species have the ability to rapidly cross host tissue barriers by a yet unknown mechanism. A comparative analysis of pathogens and saprophytes revealed a higher abundance of genes encoding proteins with leucine‐rich repeat (LRR) domains in the genomes of pathogens. In other bacterial pathogens, proteins with LRR domains have been shown to be involved in mediating host cell attachment and invasion. One protein from the pathogenic species Leptospira interrogans, LIC10831, has been previously analysed via X‐ray crystallography, with findings suggesting it may be an important bacterial adhesin. Herein we show that LIC10831 elicits an antibody response in infected animals, is actively secreted by the bacterium, and binds human E‐ and VE‐cadherins. These results provide biochemical and cellular evidences of LRR protein‐mediated host–pathogen interactions and identify a new multireceptor binding protein from this infectious Leptospira species.  相似文献   

10.
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic‐resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant‐based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant‐based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant‐based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.  相似文献   

11.
Pathogens that can be transmitted between different host species are of fundamental interest and importance from public health, conservation and economic perspectives, yet systematic quantification of these pathogens is lacking. Here, pathogen characteristics, host range and risk factors determining disease emergence were analysed by constructing a database of disease-causing pathogens of humans and domestic mammals. The database consisted of 1415 pathogens causing disease in humans, 616 in livestock and 374 in domestic carnivores. Multihost pathogens were very prevalent among human pathogens (61.6%) and even more so among domestic mammal pathogens (livestock 77.3%, carnivores 90.0%). Pathogens able to infect human, domestic and wildlife hosts contained a similar proportion of disease-causing pathogens for all three host groups. One hundred and ninety-six pathogens were associated with emerging diseases, 175 in humans, 29 in livestock and 12 in domestic carnivores. Across all these groups, helminths and fungi were relatively unlikely to emerge whereas viruses, particularly RNA viruses, were highly likely to emerge. The ability of a pathogen to infect multiple hosts, particularly hosts in other taxonomic orders or wildlife, were also risk factors for emergence in human and livestock pathogens. There is clearly a need to understand the dynamics of infectious diseases in complex multihost communities in order to mitigate disease threats to public health, livestock economies and wildlife.  相似文献   

12.
A growing number of studies support a tendency toward preferential host switching, by parasites and pathogens, over relatively short phylogenetic distances. This suggests that a host switch is more probable if a potential host is closely related to the original host than if it is a more distant relative. However, despite its importance for the health of humans, livestock, and wildlife, the detailed dynamics of preferential host switching have, so far, been little studied. We present an empirical test of two theoretical models of preferential host switching, using observed phylogenetic distributions of host species for RNA viruses of three mammal orders (primates, carnivores, and ungulates). The analysis focuses on multihost RNA virus species, because their presence on multiple hosts and their estimated ages of origin indicate recent host switching. Approximate Bayesian computation was used to compare observed phylogenetic distances between hosts with those simulated under the theoretical models. The results support a decreasing sigmoidal model of preferential host switching, with a strong effect from increasing phylogenetic distance, on all three studied host phylogenies. This suggests that the dynamics of host switching are fundamentally similar for RNA viruses of different mammal orders and, potentially, a wider range of coevolutionary systems.  相似文献   

13.
Pathogens compete with host microbiomes for space and resources. Their shared environment impacts pathogen–microbiome–host interactions, which can lead to variation in disease outcome. The skin microbiome of red‐backed salamanders (Plethodon cinereus) can reduce infection by the pathogen Batrachochytrium dendrobatidis (Bd) at moderate infection loads, with high species richness and high abundance of competitors as putative mechanisms. However, it is unclear if the skin microbiome can reduce epizootic Bd loads across temperatures. We conducted a laboratory experiment to quantify skin microbiome and host responses (P. cinereus: n = 87) to Bd at mimicked epizootic loads across temperatures (13, 17 and 21°C). We quantified skin microbiomes using 16S rRNA gene metabarcoding and identified operational taxonomic units (OTUs) taxonomically similar to culturable bacteria known to kill Bd (anti‐Bd OTUs). Prior to pathogen exposure, temperature changed the microbiome (OTU richness decreased by 12% and the abundance of anti‐Bd OTUs increased by 18% per degree increase in temperature), but these changes were not predictive of disease outcome. After exposure, Bd changed the microbiome (OTU richness decreased by 0.1% and the abundance of anti‐Bd OTUs increased by 0.2% per 1% increase in Bd load) and caused high host mortality across temperatures (35/45: 78%). Temperature indirectly impacted microbiome change and mortality through its direct effect on pathogen load. We did not find support for the microbiome impacting Bd load or host survival. Our research reveals complex host, pathogen, microbiome and environmental interactions to demonstrate that during epizootic events the microbiome will be unlikely to reduce pathogen invasion, even for putatively Bd‐resistant species.  相似文献   

14.
Does the structure and connectivity of host populations influence the dynamics and evolution of their pathogens? This topical question is the essence of research investigating the ecology of a Pteropus fruit bat and its zoonotic Nipah virus (NiV) published by Olival et al. in this issue of Molecular Ecology. Questioned less overtly, but nonetheless implicit to the study, is “what are the mechanisms underpinning intraspecific host–pathogen congruence (IHPC) of genetic structure?”. Olival et al. investigated the phylogeographical structure of Pteropus medius and NiV isolates across Bangladesh, from areas inside and outside of the Nipah belt—an area where most human spillover events occur. A high degree of host panmixia was discovered, with some population differentiation east of the Nipah belt. NiV genetic structure was congruent with the host. The authors attributed the panmixia and structuring, respectively, to (a) the highly vagile nature of P. medius, and (b) possible differences between bioregions within and outside the Nipah belt. Other potential explanatory mechanisms were acknowledged, including hybridization and transmission mode. This study makes a valuable contribution to a growing body of literature examining IHPC. This has implications not only for pathogen spillover to humans and domestic animals, but more generally for thinking about the mechanisms that underlie patterns of host and pathogen genetic associations.  相似文献   

15.
Studying fungal virulence is often challenging and frequently depends on many contexts, including host immune status and pathogen genetic background. However, the role of ploidy has often been overlooked when studying virulence in eukaryotic pathogens. Since fungal pathogens, including the human opportunistic pathogen Candida albicans, can display extensive ploidy variation, assessing how ploidy impacts virulence has important clinical relevance. As an opportunistic pathogen, C. albicans causes nonlethal, superficial infections in healthy individuals, but life‐threatening bloodstream infections in individuals with compromised immune function. Here, we determined how both ploidy and genetic background of C. albicans impacts virulence phenotypes in healthy and immunocompromised nematode hosts by characterizing virulence phenotypes in four near‐isogenic diploid and tetraploid pairs of strains, which included both laboratory and clinical genetic backgrounds. We found that C. albicans infections decreased host survival and negatively impacted host reproduction, and we leveraged these two measures to survey both lethal and nonlethal virulence phenotypes across the multiple C. albicans strains. In this study, we found that regardless of pathogen ploidy or genetic background, immunocompromised hosts were susceptible to fungal infection compared to healthy hosts. Furthermore, for each host context, we found a significant interaction between C. albicans genetic background and ploidy on virulence phenotypes, but no global differences between diploid and tetraploid pathogens were observed.  相似文献   

16.
Microsporidia comprises a diverse group of obligate intracellular parasites that infect a broad range of invertebrates and vertebrates. Among Microsporidia, Enterocytozoon bieneusi is the most frequently detected species in humans and animals worldwide bringing into question the possible role of animal reservoirs in the epidemiology of this pathogen. Although E. bieneusi is an emerging zoonotic pathogen able to infect many domestic and wild mammals that could act as reservoir of infection for humans and other animals, only few studies have documented its occurrence in wild carnivores. To determine the occurrence of E. bieneusi in wild carnivores, we examined 190 wild carnivores collected from different locations in Spain. Twenty‐five fecal samples (13.2%) from three host species (European badger, beech marten, and red fox) were E. bieneusi‐positive by PCR. Nucleotide sequence analysis of the ITS region revealed a high degree of genetic diversity with a total of eight distinct genotypes including four known (PtEbIX, S5, S9, and WildBoar3) and four novel (EbCar1‐EbCar4) genotypes identified. Phylogenetic analysis showed that the four novel genotypes (EbCar1‐EbCar4), S5, S9, and WildBoar3 clustered within the previously designated zoonotic Group 1. Our results demonstrate that human‐pathogenic genotypes are present in wild carnivores, corroborating their potential role as a source of human infection and environmental contamination.  相似文献   

17.
Borrelia burgdorferi is the causative agent of Lyme disease that persists in a complex enzootic life cycle, involving Ixodes ticks and vertebrate hosts. The microbe invades ticks and vertebrate hosts in spite of active immune surveillance and potent microbicidal responses, and establishes long‐term infection utilising mechanisms that are yet to be unravelled. The pathogen can cause multi‐system disorders when transmitted to susceptible mammalian hosts, including in humans. In the past decades, several studies identified a limited number of B. burgdorferi gene‐products critical for pathogen persistence, transmission between the vectors and the host, and host–pathogen interactions. This review will focus on the interactions between B. burgdorferi proteins, as well as between microbial proteins and host components, protein and non‐protein components, highlighting their roles in pathogen persistence in the mammalian host. A better understanding of the contributions of protein interactions in the microbial virulence and persistence of B. burgdorferi would support development of novel therapeutics against the infection.  相似文献   

18.
The health of the honey bee Apis mellifera is challenged by introduced parasites that interact with its inherent pathogens and cause elevated rates of colony losses. To elucidate co‐occurrence, population dynamics, and synergistic interactions of honey bee pathogens, we established an array of diagnostic assays for a high‐throughput qPCR platform. Assuming that interaction of pathogens requires co‐occurrence within the same individual, single worker bees were analyzed instead of collective samples. Eleven viruses, four parasites, and three pathogenic bacteria were quantified in more than one thousand single bees sampled from sixteen disease‐free apiaries in Southwest Germany. The most abundant viruses were black queen cell virus (84%), Lake Sinai virus 1 (42%), and deformed wing virus B (35%). Forager bees from asymptomatic colonies were infected with two different viruses in average, and simultaneous infection with four to six viruses was common (14%). Also, the intestinal parasites Nosema ceranae (96%) and Crithidia mellificae/Lotmaria passim (52%) occurred very frequently. These results indicate that low‐level infections in honey bees are more common than previously assumed. All viruses showed seasonal variation, while N. ceranae did not. The foulbrood bacteria Paenibacillus larvae and Melissococcus plutonius were regionally distributed. Spearman's correlations and multiple regression analysis indicated possible synergistic interactions between the common pathogens, particularly for black queen cell virus. Beyond its suitability for further studies on honeybees, this targeted approach may be, due to its precision, capacity, and flexibility, a viable alternative to more expensive, sequencing‐based approaches in nonmodel systems.  相似文献   

19.
Bats are natural reservoirs of several important emerging viruses. Cross‐species transmission appears to be quite common among bats, which may contribute to their unique reservoir potential. Therefore, understanding the importance of bats as reservoirs requires examining them in a community context rather than concentrating on individual species. Here, we use a network approach to identify ecological and biological correlates of cross‐species virus transmission in bats and rodents, another important host group. We show that given our current knowledge the bat viral sharing network is more connected than the rodent network, suggesting viruses may pass more easily between bat species. We identify host traits associated with important reservoir species: gregarious bats are more likely to share more viruses and bats which migrate regionally are important for spreading viruses through the network. We identify multiple communities of viral sharing within bats and rodents and highlight potential species traits that can help guide studies of novel pathogen emergence.  相似文献   

20.
The close phylogenetic relationship between humans and nonhuman primates (NHPs) can result in a high potential for pathogen exchange. In recent decades, NHP and human interactions have become more frequent due to increasing habitat encroachment and ecotourism. Strongylid communities, which include members of several genera, are typically found in NHPs. Using optimized high‐throughput sequencing for strain‐level identification of primate strongylids, we studied the structure of strongylid communities in NHPs and humans co‐habiting a tropical forest ecosystem in the Central African Republic. General taxonomic assignment of 85 ITS‐2 haplotypes indicated that the studied primates harbour at least nine genera of strongylid nematodes, with Oesophagostomum and Necator being the most prevalent. We detected both host‐specific and shared strongylid haplotypes. Skin‐penetrating Necator gorillaehaplotypes were shared between humans and gorillas but Necator americanus were much more restricted to humans. Strongylid communities of local hunter‐gatherers employed as trackers were more similar to those of gorillas compared to their relatives, who spent more time in villages. This was due to lower abundance of human‐origin N. americanus in both gorillas and trackers. Habituated gorillas or those under habituation did not show larger overlap of strongylids with humans compared to unhabituated. We concluded that the occurrence of the human‐specific strongylids in gorillas does not increase with direct contact between gorillas and humans due to the habituation. Overall, our results indicate that the degree of habitat sharing between hosts, together with mode of parasite transmission, are important factors for parasite spillover among primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号