首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Urbanisation and its associated habitat loss and fragmentation are considered a major threat to wildlife. In this study, we assessed the predictors of bird species abundance, richness and composition within 70 cells of 500 m by 500 m spread across the five urban areas constituting Ibadan metropolis. A total of 4167 individuals of 55 species belonging to 30 families were recorded. We report that Laughing dove Streptopelia senegalensis, Speckled pigeon Columba guinea and Yellow-billed kite Milvus aegyptius contributed to a greater proportion of bird abundance across sites and Columbidae was the most abundant bird family. Bird species richness increased significantly with tree abundance but decreased significantly with the number of pedestrians. Similarly, foraging guild richness declined significantly with the number of pedestrians. Granivores and scavengers constituted the most abundant foraging guilds. Areas with high pedestrians' traffic were associated with fewer trees and were dominated by fewer numbers of species belonging to a few foraging guilds. This is likely because such areas offer limited foraging opportunities or cover from potential predators. We conclude that improving urban landscape characteristics through revegetation, establishment of green spaces and buffering from human disturbance will improve the composition and richness of avian species in the Ibadan metropolis.  相似文献   

2.
As evidence mounts that the feral Cat (Felis catus) is a significant threat to endemic Australian biodiversity and impedes reintroduction attempts, uncertainty remains about the impact a residual population of cats following control will have on a mammal reintroduction programme. Also, behavioural interactions between cats and their prey continue to be an area of interest. Within the framework of an ecosystem restoration project, we tested the hypotheses that successful reintroductions of some medium‐sized mammals are possible in locations where feral cats are controlled (but not eradicated) in the absence of European Red Fox (Vulpes vulpes), and that hare‐wallabies that dispersed from their release area are more vulnerable to cat predation compared with those that remain at the release site. We used radiotelemetry to monitor the survivorship and dispersal of 16 Rufous Hare‐wallabies (Lagorchestes hirsutus spp.) and 18 Banded Hare‐wallabies (Lagostrophus fasciatus fasciatus) reintroduced to four sites within Shark Bay, Western Australia. Nearly all foxes were removed and feral cats were subject to ongoing control that kept their indices low relative to prerelease levels. All monitored hare‐wallabies were killed by cats within eight and 10 months following release. Significant predation by feral cats was not immediate: most kills occurred in clusters, with periods of several months where no mortalities occurred. Once a hare‐wallaby was killed, however, predation continued until each population was eliminated. Animals remaining near their release site survived longer than those that dispersed. The aetiology of predation events observed offers new insights into patterns of feral cat behaviour and mammal releases. We propose a hypothesis that these intense per capita predation events may reflect a targeted hunting behaviour in individual feral cats. Even where feral cats are controlled, the outcome from consistent predation events will result in reintroduction failures. Managers considering the reintroduction of medium‐sized mammals in the presence of feral cats should, irrespective of concurrent cat control, consider the low probability of success. We advocate alternative approaches to cat‐baiting alone for the recovery of cat‐vulnerable mammals such as hare‐wallabies.  相似文献   

3.
  总被引:2,自引:0,他引:2  
The transfer of seed‐containing hay is a restoration measure for the introduction of plant species of local provenance. We investigated the effect of hay transfer on species richness and on long‐term establishment of target plant and grasshopper species on former arable fields with and without topsoil removal in comparison to reference sites in a nature reserve. Plant species richness, the number of target plant species, and Red List plant species were significantly positively affected by hay transfer, both on the scale of whole restoration fields and on permanent plots of 4 m2. Eight years after the start of the restoration, only few of the transferred plant species had disappeared and some target species were newly found. Grasshoppers were affected not by hay transfer but by topsoil removal. The proportion of target grasshopper and plant species and Red List grasshopper species was higher on topsoil removal sites with low standing crop and high cover of bare soil than on sites without soil removal. On topsoil removal sites without hay, however, plant species richness was very low because of the slow natural dispersal of the target species. Vegetation and grasshopper communities still differed between restoration fields and the nature reserve. Nevertheless, our results indicate that the transfer of autochthonous seed‐containing hay is a successful method to establish species‐rich grasslands with a high proportion of target species.  相似文献   

4.
    
  1. Camera traps are automated cameras, triggered by movements, used to collect photographic evidence of the presence of animals in field research. I asked whether the use of camera traps in mammalian field research is distributed evenly and increasing equally in a range of habitats, taxa and study types. I aimed to understand where camera traps are used and for what purposes.
  2. I identified the population of papers published since 1994 in which camera trap methodology was used. I then explored the population for defined habitats, taxa and study types. I tested the derived data for growth and distribution. Over 96% of the population of camera trap papers identified were focused on mammalian species.
  3. Between 1994 and 2011, the use of camera traps for mammalian research increased: 73% of 414 studies were published after 2005. Over time, equipment has become more sophisticated, reliable, flexible, cost‐effective and easy to deploy, and there have been other methodological advances.
  4. Growth in the number of mammal‐related camera trap studies was matched by an expansion in the taxa studied and in study types. The most studied taxon is the order Carnivora; forests are the most studied habitat. No single study type dominates, although there are more population density studies than any other. Camera trap studies are focused on a limited number of habitats and taxa due to their particular strengths and the characteristics of the species that they are used to investigate.
  5. Developments such as infrared illumination and triggering, greater battery life, improved lenses, digital storage capacity, miniaturization, video and real‐time links will enable camera traps to be used for an increasing range of habitats, taxa and study types and will reinforce their growing value in the areas in which they currently predominate.
  相似文献   

5.
    
Will we catch fish today? Our grandfathers’ responses were usually something along the lines of, ‘Probably. I've caught them here before’. One of the foundations of ecology is identifying which species are present, and where. This informs our understanding of species richness patterns, spread of invasive species, and loss of threatened and endangered species due to environmental change. However, our understanding is often lacking, particularly in aquatic environments where biodiversity remains hidden below the water's surface. The emerging field of metagenetic species surveillance is aiding our ability to rapidly determine which aquatic species are present, and where. In this issue of Molecular Ecology Resources, Ficetola et al. ( 2015 ) provide a framework for metagenetic environmental DNA surveillance to foster the confidence of our grandfathers’ fishing prowess by more rigorously evaluating the replication levels necessary to quantify detection errors and ultimately improving our confidence in aquatic species presence.  相似文献   

6.
1. One of the oldest questions in ecology is how species diversity in any given trophic level is related to the availability of essential resources that limit biomass (e.g. water, nutrients, light or prey). Researchers have tried to understand this relationship by focusing either on how diversity is influenced by the availability of resources, or alternatively, how resource abundance is influenced by species diversity. These contrasting perspectives have led to a seeming paradox '... is species diversity the cause or the consequence of resources that limit community biomass?' 2. Here we present results of an experiment that show it is possible for species diversity and resource density to exhibit reciprocal causal relationships in the same ecological system. Using a guild of ladybeetle predators and their aphid prey, we manipulated the number of predator species in field enclosures to examine how predator diversity impacts prey population size. At the same time, we manipulated the abundance of aphid prey in discrete habitat patches within each enclosure to determine how smaller-scale spatial variation in resource abundance affects the number of co-occurring predator species. 3. We found that the number of ladybeetle species added to enclosures had a significant impact on aphid population dynamics because interference competition among the predators reduced per capita rates of predation and, in turn, the overall efficiency of the predator guild. At the same time, spatial variation in aphid abundance among smaller habitat patches generated variation in the observed richness of ladybeetles because more species occurred in patches where predators aggregated in response to high aphid density. 4. The results of our experiment demonstrate that it is possible for species diversity to simultaneously be a cause and a consequence of resource density in the same ecological system, and they shed light on how this might occur for groups of mobile consumers that exhibit rapid responses to spatial and temporal variation in their prey.  相似文献   

7.
8.
    
Urbanization is a leading cause of global biodiversity loss, yet cities can provide resources required by many species throughout the year. In recognition of this, cities around the world are adopting strategies to increase biodiversity. These efforts would benefit from a robust understanding of how natural and enhanced features in urbanized areas influence various taxa. We explored seasonal and spatial patterns in occupancy and taxonomic richness of birds and pollinators among office parks in Santa Clara County, California, USA, where natural features and commercial landscaping have generated variation in conditions across scales. We surveyed birds and insect pollinators, estimated multi-species occupancy and species richness, and found that spatial scale (local, neighborhood, and landscape scale), season, and urban sensitivity were all important for understanding how communities occupied sites. Features at the landscape (distance to streams or baylands) and local scale (tree canopy, shrub, or impervious cover) were the strongest predictors of avian occupancy in all seasons. Pollinator richness was influenced by local tree canopy and impervious cover in spring, and distance to baylands in early and late summer. We then predicted the relative contributions of different spatial scales to annual bird species richness by simulating “good” and “poor” quality sites based on influential covariates returned by the previous models. Shifting from poor to good quality conditions locally increased annual avian richness by up to 6.8 species with no predicted effect on the quality of the neighborhood. Conversely, sites of poor local and neighborhood scale quality in good-quality landscapes were predicted to harbor 11.5 more species than sites of good local- and neighborhood-scale quality in poor-quality landscapes. Finally, more urban-sensitive bird species were gained at good quality sites relative to urban tolerant species, suggesting that urban natural features at the local and landscape scales disproportionately benefited them.  相似文献   

9.
    
Multispecies occupancy models can estimate species richness from spatially replicated multispecies detection/non‐detection survey data, while accounting for imperfect detection. A model extension using data augmentation allows inferring the total number of species in the community, including those completely missed by sampling (i.e., not detected in any survey, at any site). Here we investigate the robustness of these estimates. We review key model assumptions and test performance via simulations, under a range of scenarios of species characteristics and sampling regimes, exploring sensitivity to the Bayesian priors used for model fitting. We run tests when assumptions are perfectly met and when violated. We apply the model to a real dataset and contrast estimates obtained with and without predictors, and for different subsets of data. We find that, even with model assumptions perfectly met, estimation of the total number of species can be poor in scenarios where many species are missed (>15%–20%) and that commonly used priors can accentuate overestimation. Our tests show that estimation can often be robust to violations of assumptions about the statistical distributions describing variation of occupancy and detectability among species, but lower‐tail deviations can result in large biases. We obtain substantially different estimates from alternative analyses of our real dataset, with results suggesting that missing relevant predictors in the model can result in richness underestimation. In summary, estimates of total richness are sensitive to model structure and often uncertain. Appropriate selection of priors, testing of assumptions, and model refinement are all important to enhance estimator performance. Yet, these do not guarantee accurate estimation, particularly when many species remain undetected. While statistical models can provide useful insights, expectations about accuracy in this challenging prediction task should be realistic. Where knowledge about species numbers is considered truly critical for management or policy, survey effort should ideally be such that the chances of missing species altogether are low.  相似文献   

10.
  总被引:2,自引:0,他引:2  
In 1993, experiments on the restoration of calcareous grasslands on ex‐arable fields were started in order to provide new habitats for species of a small nature reserve with ancient grasslands north of Munich (Germany). The effects of diaspore transfer by the application of seed‐containing hay on vegetation establishment were studied on restoration fields with and without topsoil removal for 5 years. The aim of the study was to assess plant diversity for the evaluation of restoration success by different methods including determination of species with viable seeds in the hay by germination tests, phenological investigations on hay‐transfer source sites at the time of harvest, and vegetation analyses on the restoration sites. Total seed content of the hay and the number and composition of plant species with viable seeds were affected by the time of harvesting and differed between a site which had been used as arable field until 1959 and ancient grassland sites. Nevertheless, the number of established hay‐transfer species showed only few differences between restoration fields. The proportion of species transferred to restoration fields in relation to the number of species with viable seeds in the hay was between 69 and 89%. Five years after the hay transfer, the proportion of the established species was still between 58 and 76%. Up to now, topsoil removal had no significant effect on the number of established hay‐transfer species. After triple hay application the absolute number of transferred grassland species was higher than on sites with single hay application, but restoration efficiency was lower because many of the species with viable seeds in the hay did not establish. In general, our results showed that the transfer of autochthonous hay is a successful method to overcome dispersal limitation in restoration projects.  相似文献   

11.
12.
    
  1. Ants are abundant in natural and managed tropical ecosystems and can have an impact on herbivorous arthropods, as well as plant pathogens. Although it has been shown for plants that the diversity of communities can result in improved ecosystem functioning, it remains uncertain how the species richness of ants affects multiple ecosystem services and disservices.
  2. In the present study, we used experimentally enhanced natural gradients in ant species richness on 100 cacao trees in a plantation aiming to analyze the effect of ant species identity and species richness on predation pressure and the incidence of cacao pod borer (CPB), as well as the spread of black pod disease (BPD).
  3. Ant species richness did not significantly improve predation of experimentally exposed insects, and was not associated with a reduction in the incidence of CPB. However, the incidence of BPD was higher in ant species rich trees, presumably because more ant species were pathogen vectors. The identity of the dominant ant species affected the incidence of CPB and BPD, as well as predation pressure.
  4. Although both ant species richness and identity affected ecosystem services and disservices delivered by the ant community, the results of the present study suggest that the identity of dominant ants is the main driver for ecosystem services in these systems.
  相似文献   

13.
Summary Information on the impacts of outdoor recreation on wildlife within national parks and reserves can be useful to natural area managers. This study aimed to (i) investigate the density, diversity and species composition of avian communities in recreation areas in bushland settings in comparison to surrounding natural habitats, and (ii) determine the influence of the presence of people on avian assemblages in such recreation areas. Avian density, species richness and community composition were compared between six high‐visitation bushland camping and picnic areas (recreation areas) and surrounding undisturbed habitats to examine the effect of recreation areas on avian assemblages. While total numbers of birds detected was found to be higher in recreation areas, species richness trends indicated that a greater diversity of birds was associated with the surrounding natural habitats, which were found to support a taxonomically different avian assemblage to the recreation areas. Interestingly, species previously shown to distinguish urban avian communities were commonly present and often more abundant in the recreation areas than the surrounding natural habitats. We investigated the effect of the intermittent presence of people (rather than clearing alone) and addressed changes in the diurnal distribution of species, by comparing avian assemblages at 22 picnic areas in the morning, at midday and in the afternoon between days of high and low human visitation. Observations of the availability of anthropogenic food resources and subsequent utilization by avifauna were recorded. Generally, avian assemblages appeared to be independent of the presence of people, although the provision of anthropogenic foods is thought to have the potential to adversely affect individual birds. The findings of this study suggest that even small‐scale habitat clearance to create picnic areas adversely affects the avian assemblage present, with temporal changes in visitation levels of humans in these areas appearing to have had no additional influence unless through indirect impacts from anthropogenic foods.  相似文献   

14.
    
We compared the aquatic metazoan community structure in bamboo stumps between a lowland (Kosinggolan; 200 m a.s.l.) and a highland site (Moat; 1030–1050 m a.s.l.) in North Sulawesi. The lowland bamboo stumps harbored 38 taxa including 2 predators, and the highland stumps harbored 35 taxa including 2 predators. In total 45 taxa were recorded, including 3 predators. Dominant detritivores were Tipulidae, Scirtidae, Chironomidae, Culicidae and Ceratopogonidae. The sole dominant predators wereToxorhynchites mosquito larvae, which occurred in 67% and 28% of stumps at the lowland and the highland sites, respectively. Although the mean biomass per stump did not differ significantly between the sites, the mean number of species per stump was significantly smaller at the lowland site. In addition, the variation in species composition among stumps was greater at the lowland site than at the highland site. Among dominant taxonomic groups, the number of non-predatory culicid species per stump was smaller at the lowland site where their predator,Toxorhynchites, was more abundant, although both sites had the same number of culicid species. In the presence ofToxorhynchites, the density and biomass of other culicids per stump were reduced significantly. The difference in predator density might affect differences in the local-scale community structure of individual bamboo stumps.  相似文献   

15.
    
Detecting all species in a given survey is challenging, regardless of sampling effort. This issue, more commonly known as imperfect detection, can have negative impacts on data quality and interpretation, most notably leading to false absences for rare or difficult‐to‐detect species. It is important that this issue be addressed, as estimates of species richness are critical to many areas of ecological research and management. In this study, we set out to determine the impacts of imperfect detection, and decisions about thresholds for inclusion in occupancy, on estimates of species richness and community structure. We collected data from a stream fish assemblage in Algonquin Provincial Park to be used as a representation of ecological communities. We then used multispecies occupancy modeling to estimate species‐specific occurrence probabilities while accounting for imperfect detection, thus creating a more informed dataset. This dataset was then compared to the original to see where differences occurred. In our analyses, we demonstrated that imperfect detection can lead to large changes in estimates of species richness at the site level and summarized differences in the community structure and sampling locations, represented through correspondence analyses.  相似文献   

16.
    
The Mississippi Alluvial Valley (MAV) originally consisted of nearly contiguous bottomland hardwood (BLH) forest encompassing approximately 10 million hectares. Currently, only 20–25% of the historical BLH forests remain in small patches fragmented by agricultural lands. The Wetlands Reserve Program (WRP) was established to restore and protect the functions and values of wetlands in agricultural landscapes. To assess the potential benefit of WRP restoration to amphibians, we surveyed 30 randomly selected WRP sites and 20 nearby agricultural sites in the Mississippi Delta. We made repeat visits to each site from May to August 2008 and performed both visual encounter and vocalization surveys. We analyzed the encounter history data for 11 anuran species using a Bayesian hierarchical occupancy model that estimated detection probability and probability of occurrence simultaneously for each species. Nine of the 11 species had higher probabilities of occurrence at WRP sites compared to agriculture. Derived estimates of species richness were also higher for WRP sites. Five anuran species were significantly more likely to occur in WRP than in agriculture, four of which were among the most aquatic species. It appears that the restoration of a more permanent hydrology at the WRP sites may be the primary reason for this result. Although amphibians represent only one group of wildlife species, they are useful for evaluating restoration benefits for wildlife because of their intermediate trophic position. The methods used in this study to evaluate the benefit of restoration could be used in other locations and with other groups of indicator species.  相似文献   

17.
    
  1. Surface water connectivity can influence the richness and composition of fish assemblages, particularly in harsh environments where colonisation factors and access to seasonal refugia are required for species persistence.
  2. Studies regarding influence of connectivity on Arctic fish distributions are limited and are rarely applied to whole assemblage patterns. To increase our understanding of how surface water connectivity and related hydrologic variables influence assemblage patterns, we investigated species richness and composition of Arctic lake fishes over a large region, 8500 km2, of the central Arctic Coastal Plain, Alaska.
  3. We collected fish presence/non‐detection data from 102 lakes and used a hierarchical multispecies occupancy framework to derive species richness and inform species composition patterns. Our mean estimate of regional richness was 12.3 (SD 0.5) species. Presence of a permanent channel connection was an overriding factor affecting species richness (mean 3.6, 95% CI 3.1–4.9), presumably driving lake colonisation potential. In lakes without a permanent channel connection, data suggest richness (mean 2.0, 95% CI 1.7–3.3) increased with the availability of in‐lake winter refugia and with the potential of ephemeral connections during spring floods.
  4. Fish species functional traits and environmental faunal filters contributed to patterns of richness and assemblage composition. Composition corresponded with richness in a coherent manner, where each successive level of richness contained several discrete assemblages that showed similar responses to the environment. Lakes with permanent channel connections contained both widespread and restricted species, while the species‐poor lakes that lacked a connection contained mainly widespread species.
  5. This work provides useful baseline information on the processes that drive the relations between patch connectivity and fish species richness and assemblage composition. The environmental processes that organise fish assemblages in Arctic lakes are likely to change in a warming climate.
  相似文献   

18.
  总被引:5,自引:0,他引:5  
Are latitudinal gradients in regional diversity random or biased with respect to body size? Using data for the New World avifauna, I show that the slope of the increase in regional species richness from the Arctic to the equator is not independent of body size. The increase is steepest among small and medium‐sized species, and shallowest among the largest species. This is reflected in latitudinal variation in the shape of frequency distributions of body sizes in regional subsets of the New World avifauna. Because species are added disproportionately in small and medium size classes towards low latitudes, distributions become less widely spread along the body size axis than expected from the number of species. These patterns suggest an interaction between the effects of latitude and body size on species richness, implying that mechanisms which vary with both latitude and body size may be important determinants of high tropical diversity in New World birds.  相似文献   

19.
    
Mutualistic symbionts are widespread in plants and may have strong, bottom-up influences on community structure. Here we show that a grass–endophyte mutualism shifts the composition of a generalist predator assemblage. In replicated, successional fields we manipulated endophyte infection by Neotyphodium coenophialum in a dominant, non-native plant ( Lolium arundinaceum ). We compared the magnitude of the endophyte effect with manipulations of thatch biomass, a habitat feature of known importance to spiders. The richness of both spider families and morphospecies was greater in the absence of the endophyte, although total spider abundance was not affected. Thatch removal reduced both spider abundance and richness, and endophyte and thatch effects were largely additive. Spider families differed in responses, with declines in Linyphiidae and Thomisidae due to the endophyte and declines in Lycosidae due to thatch removal. Results demonstrate that the community impacts of non-native plants can depend on plants' mutualistic associates, such as fungal endophytes.  相似文献   

20.
  总被引:5,自引:0,他引:5  
Abstract. In southwestern Ontario amphibian species richness (α-diversity) was investigated at 180 ponds from 1992 to 1994. Patterns of species richness were compared among regions and the relationship between species richness and local habitat and regional landscape variables was investigated. Patterns of incidence differed among regions, with species that use woodlands being rare in one of the regions. Repeated measures analysis of variance indicated that species richness differed significantly among regions but not among sub-regions nested within regions. Species richness did not change significantly over time and there was no region by year effect. Species richness was highly correlated with local variables related to fish predation and to regional variables related to forest cover. Multiple regression indicated that a combination of local and regional variables best accounted for the variance in species richness, but the amount of regional woodlands was the single most important variable. The pattern of species richness can be explained by historical deforestation as the primary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号