首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hetero-tetrameric voltage-gated potassium channel Kv7.2/Kv7.3, which is encoded by KCNQ2 and KCNQ3, plays an important role in limiting network excitability in the neonatal brain. Kv7.2/Kv7.3 dysfunction resulting from KCNQ2 mutations predominantly causes self-limited or benign epilepsy in neonates, but also causes early onset epileptic encephalopathy. Retigabine (RTG), a Kv7.2/ Kv7.3-channel opener, seems to be a rational antiepileptic drug for epilepsies caused by KCNQ2 mutations. We therefore evaluated the effects of RTG on seizures in two strains of knock-in mice harboring different Kcnq2 mutations, in comparison to the effects of phenobarbital (PB), which is the first-line antiepileptic drug for seizures in neonates. The subjects were heterozygous knock-in mice (Kcnq2Y284C/+ and Kcnq2A306T/+) bearing the Y284C or A306T Kcnq2 mutation, respectively, and their wild-type (WT) littermates, at 63–100 days of age. Seizures induced by intraperitoneal injection of kainic acid (KA, 12mg/kg) were recorded using a video-electroencephalography (EEG) monitoring system. Effects of RTG on KA-induced seizures of both strains of knock-in mice were assessed using seizure scores from a modified Racine’s scale and compared with those of PB. The number and total duration of spike bursts on EEG and behaviors monitored by video recording were also used to evaluate the effects of RTG and PB. Both Kcnq2Y284C/+ and Kcnq2A306T/+ mice showed significantly more KA-induced seizures than WT mice. RTG significantly attenuated KA-induced seizure activities in both Kcnq2Y284C/+ and Kcnq2A306T/+ mice, and more markedly than PB. This is the first reported evidence of RTG ameliorating KA-induced seizures in knock-in mice bearing mutations of Kcnq2, with more marked effects than those observed with PB. RTG or other Kv7.2-channel openers may be considered as first-line antiepileptic treatments for epilepsies resulting from KCNQ2 mutations.  相似文献   

2.
Aggression is an aspect of social behavior that can be elevated in some individuals with autism spectrum disorder (ASD) and a concern for peers and caregivers. Mutations in Phosphatase and tensin homolog (PTEN), one of several ASD risk factors encoding negative regulators of the PI3K–Akt–mTOR pathway, have been reported in individuals with ASD and comorbid macrocephaly. We previously showed that a mouse model of Pten germline haploinsufficiency (Pten+/?) has selective deficits, primarily in social behavior, along with broad overgrowth of the brain. Here, we further examine the social behavior of Pten+/? male mice in the resident–intruder test of aggression, using a comprehensive behavioral analysis to obtain an overall picture of the agonistic, non‐agonistic and non‐social behavior patterns of Pten+/? mice during a free interaction with a novel conspecific. Pten+/? male mice were involved in less aggression than their wild‐type littermates. Pten+/? mice also performed less social investigation, including anogenital investigation and approaching and/or attending to the intruder, which is consistent with our previous finding of decreased sociability in the social approach test. In contrast to these decreases in social behaviors, Pten+/? mice showed increased digging. In summary, we report decreased aggression and increased repetitive behavior in Pten+/? mice, thus extending our characterization of this model of an ASD risk factor that features brain overgrowth and social deficits.  相似文献   

3.
Prostaglandin E2 (PGE2) is an endogenous lipid molecule involved in normal brain development. Cyclooxygenase‐2 (COX2) is the main regulator of PGE2 synthesis. Emerging clinical and molecular research provides compelling evidence that abnormal COX2/PGE2 signaling is associated with autism spectrum disorder (ASD). We previously found that COX2 knockout mice had dysregulated expression of many ASD genes belonging to important biological pathways for neurodevelopment. The present study is the first to show the connection between irregular COX2/PGE2 signaling and autism‐related behaviors in male and female COX2‐deficient knockin, (COX)‐2?, mice at young (4‐6 weeks) or adult (8‐11 weeks) ages. Autism‐related behaviors were prominent in male (COX)‐2? mice for most behavioral tests. In the open field test, (COX)‐2? mice traveled more than controls and adult male (COX)‐2? mice spent less time in the center indicating elevated hyperactive and anxiety‐linked behaviors. (COX)‐2? mice also buried more marbles, with males burying more than females, suggesting increased anxiety and repetitive behaviors. Young male (COX)‐2? mice fell more frequently in the inverted screen test revealing motor deficits. The three‐chamber sociability test found that adult female (COX)‐2? mice spent less time in the novel mouse chamber indicative of social abnormalities. In addition, male (COX)‐2? mice showed altered expression of several autism‐linked genes: Wnt2, Glo1, Grm5 and Mmp9. Overall, our findings offer new insight into the involvement of disrupted COX2/PGE2 signaling in ASD pathology with age‐related differences and greater impact on males. We propose that (COX)‐2? mice might serve as a novel model system to study specific types of autism.  相似文献   

4.
Reduced glutamic acid decarboxylase (GAD)67 expression may be causally involved in the development of social withdrawal in neuropsychiatric states such as autism, schizophrenia and bipolar disorder. In this study, we report disturbance of social behavior in male GAD67 haplodeficient mice. GAD67+/? mice, compared to GAD67+/+ littermates, show reduced sociability and decreased intermale aggression, but normal nest building and urine marking behavior, as well as unchanged locomotor activity and anxiety‐like behavior. Moreover, the mutants display a reduced sensitivity to both social and non‐social odors, indicating a disturbance in the detection and/or processing of socially relevant olfactory stimuli. Indeed, we observed reduced activation of the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, medial and cortical amygdala upon exposure of GAD67+/? mice to social interaction paradigm, as indicated by c‐Fos immunohistochemistry. These data suggest a disturbance of stimulus processing in the brain circuitry controlling social behavior in GAD67+/? mice, which may provide a useful model for studying the impact of a reduced GAD67 expression on alterations of social behavior related to neuropsychiatric disorders .  相似文献   

5.
Zfp462 is a newly identified vertebrate‐specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2‐type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon‐generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462+/?) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462+/? mice presented anxiety‐like behaviors with excessive self‐grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462+/? mice. In addition, the mRNA levels of Pbx1 (pre‐B‐cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462+/? mice, which may be the cause of anxiety‐like behaviors. Finally, imipramine, a widely used and effective anti‐anxiety medicine, rescued anxiety‐like behaviors and excessive self‐grooming in Zfp462+/? mice. In conclusion, Zfp462 deficiency causes anxiety‐like behaviors with excessive self‐grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti‐anxiety drugs.  相似文献   

6.
Loss‐of‐function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin‐insufficient mice, both Grn+/? and Grn ?/? , are used as models of FTD due to GRN mutations, with Grn+/? mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn+/? mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn ?/? mice. In this study, we investigated how the tube test phenotype of progranulin‐insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn+/? mice: at 6–8 months, Grn+/? mice were more dominant than wild‐type littermates, while after 9 months of age, Grn+/? mice were less dominant. In contrast, Grn ?/? mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn+/? mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6–9 months, Grn+/? mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9–16 months Grn+/? mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn+/? mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior.  相似文献   

7.
Atp1a3 is the Na‐pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3‐deficient heterozygous mice (Atp1a3+/?) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3+/? and compared the rank and hierarchy structure between Atp1a3+/? and wild‐type mice within a housing cage using the round‐robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3+/? than wild‐type mice, and Atp1a3+/? approached Atp1a3+/? mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3+/? group than in the wild‐type group, while no difference was observed in the mixed‐genotype housing condition. (3) Hierarchy formation was not different between Atp1a3+/? and wild type. (4) Atp1a3+/? showed a lower rank in the mixed‐genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3+/? showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy.  相似文献   

8.
Mutations in NLGN4X have been identified in individuals with autism spectrum disorders and other neurodevelopmental disorders. A previous study reported that adult male mice lacking neuroligin4 (Nlgn4) displayed social approach deficits in the three‐chambered test, altered aggressive behaviors and reduced ultrasonic vocalizations. To replicate and extend these findings, independent comprehensive analyses of autism‐relevant behavioral phenotypes were conducted in later generations of the same line of Nlgn4 mutant mice at the National Institute of Mental Health in Bethesda, MD, USA and at the Institut Pasteur in Paris, France. Adult social approach was normal in all three genotypes of Nlgn4 mice tested at both sites. Reciprocal social interactions in juveniles were similarly normal across genotypes. No genotype differences were detected in ultrasonic vocalizations in pups separated from the nest or in adults during reciprocal social interactions. Anxiety‐like behaviors, self‐grooming, rotarod and open field exploration did not differ across genotypes, and measures of developmental milestones and general health were normal. Our findings indicate an absence of autism‐relevant behavioral phenotypes in subsequent generations of Nlgn4 mice tested at two locations. Testing environment and methods differed from the original study in some aspects, although the presence of normal sociability was seen in all genotypes when methods taken from Jamain et al. (2008) were used. The divergent results obtained from this study indicate that phenotypes may not be replicable across breeding generations, and highlight the significant roles of environmental, generational and/or procedural factors on behavioral phenotypes.  相似文献   

9.
There is an urgent need for animal models of autism spectrum disorder (ASD) to understand the underlying pathology and facilitate development and testing of new treatments. The synaptic growth‐associated protein‐43 (GAP43) has recently been identified as an autism candidate gene of interest. Our previous studies show many brain abnormalities in mice lacking one allele for GAP43 [GAP43 (+/?)] that are consistent with the disordered connectivity theory of ASD. Thus, we hypothesized that GAP43 (+/?) mice would show at least some autistic‐like behaviors. We found that GAP43 (+/?) mice, relative to wild‐type (+/+) littermates, displayed resistance to change, consistent with one of the diagnostic criteria for ASD. GAP43 (+/?) mice also displayed stress‐induced behavioral withdrawal and anxiety, as seen in many autistic individuals. In addition, both GAP43 (+/?) mice and (+/+) littermates showed low social approach and lack of preference for social novelty, consistent with another diagnostic criterion for ASD. This low sociability is likely because of the mixed C57BL/6J 129S3/SvImJ background. We conclude that GAP43 deficiency leads to the development of a subset of autistic‐like behaviors. As these behaviors occur in a mouse that displays disordered connectivity, we propose that future anatomical and functional studies in this mouse may help uncover underlying mechanisms for these specific behaviors. Strain‐specific low sociability may be advantageous in these studies, creating a more autistic‐like environment for study of the GAP43‐mediated deficits of resistance to change and vulnerability to stress.  相似文献   

10.
More than a hundred de novo single gene mutations and copy‐number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism‐relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.  相似文献   

11.
Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/−) results in mild behavior abnormalities. The Nav1.2 expression level in Scn2a+/− mice is reported to be around 50–60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO) that can survive to adulthood, with about a quarter of Nav1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.  相似文献   

12.
Neurofibromatosis type‐1 (NF1) is a common neurogenetic disorder and an important cause of intellectual disability. Brain‐behaviour associations can be examined in vivo using morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to study brain structure. Here, we studied structural and behavioural phenotypes in heterozygous Nf1 mice (Nf1+/?) using T2‐weighted imaging MRI and DTI, with a focus on social recognition deficits. We found that Nf1+/? mice have larger volumes than wild‐type (WT) mice in regions of interest involved in social cognition, the prefrontal cortex (PFC) and the caudate‐putamen (CPu). Higher diffusivity was found across a distributed network of cortical and subcortical brain regions, within and beyond these regions. Significant differences were observed for the social recognition test. Most importantly, significant structure–function correlations were identified concerning social recognition performance and PFC volumes in Nf1+/? mice. Analyses of spatial learning corroborated the previously known deficits in the mutant mice, as corroborated by platform crossings, training quadrant time and average proximity measures. Moreover, linear discriminant analysis of spatial performance identified 2 separate sub‐groups in Nf1+/? mice. A significant correlation between quadrant time and CPu volumes was found specifically for the sub‐group of Nf1+/? mice with lower spatial learning performance, suggesting additional evidence for reorganization of this region. We found strong evidence that social and spatial cognition deficits can be associated with PFC/CPu structural changes and reorganization in NF1.  相似文献   

13.
Epilepsy is a common neurological disorder affecting approximately 1% of the population. Mutations in voltage‐gated sodium channels are responsible for several monogenic epilepsy syndromes. More than 800 mutations in the voltage‐gated sodium channel SCN1A have been reported in patients with generalized epilepsy with febrile seizures plus and Dravet syndrome. Heterozygous loss‐of‐function mutations in SCN1A result in Dravet syndrome, a severe infant‐onset epileptic encephalopathy characterized by intractable seizures, developmental delays and increased mortality. A common feature of monogenic epilepsies is variable expressivity among individuals with the same mutation, suggesting that genetic modifiers may influence clinical severity. Mice with heterozygous deletion of Scn1a (Scn1a+/?) model a number of Dravet syndrome features, including spontaneous seizures and premature lethality. Phenotype severity in Scn1a+/? mice is strongly dependent on strain background. On the 129S6/SvEvTac strain Scn1a+/? mice exhibit no overt phenotype, whereas on the (C57BL/6J × 129S6/SvEvTac)F1 strain Scn1a+/? mice exhibit spontaneous seizures and early lethality. To systematically identify loci that influence premature lethality in Scn1a+/? mice, we performed genome scans on reciprocal backcrosses. Quantitative trait locus mapping revealed modifier loci on mouse chromosomes 5, 7, 8 and 11. RNA‐seq analysis of strain‐dependent gene expression, regulation and coding sequence variation provided a list of potential functional candidate genes at each locus. Identification of modifier genes that influence survival in Scn1a+/? mice will improve our understanding of the pathophysiology of Dravet syndrome and may suggest novel therapeutic strategies for improved treatment of human patients.  相似文献   

14.
Individuals with autism constitute a variable population whose members are spread along the autism spectrum. Subpopulations within that spectrum exhibit other conditions, such as anxiety, intellectual disabilities, hyperactivity and epilepsy, with different severities and co‐occurrences. Among the genes associated with the increased risk for autism is the methylenetetrahydrofolate‐reductase (MTHFR) 677C>T polymorphism, which impairs one‐carbon (C1) metabolic pathway efficiency. The frequency of the MTHFR677TT homozygote is markedly higher among autism patients and their mothers than in the general population. Here, we report on the Mthfr heterozygous knockout (KO) mouse as a rodent model of autism that shows the contributions of maternal and offspring genotypes to the development of autistic‐like behaviors. Maternal Mthfr‐deficiency was associated with developmental delays in morphogenic features and sensory‐motor reflexes in offspring. In the adult male mouse, behaviors representing core autism symptoms, such as repetitive behavior and restricted interest, were affected by maternal genotype while social behaviors were affected by both maternal and offspring genotypes. In females and males, behaviors associated with autism such as memory impairment, social aggression and anxiety were affected by both the maternal and offspring Mthfr genotypes, with sex‐dependent differences. Mthfr‐deficient male mice with observable impacts on behavior presented a particular laminar disturbance in parvalbumin interneuron density and innervation in superficial and deep layers of the cingulate cortex. This mouse model of autism will help to elucidate the molecular mechanisms that predispose a significant subgroup of autistic patients to abnormal development and to distinguish between the in‐utero and autonomous factors involved in autism.  相似文献   

15.
Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920’s a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole) were compared between BTBR and control (C57Bl/6) mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.  相似文献   

16.
Brain‐derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In this study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing Bdnf+/? with wildtype mice (WT) at different ages. Bdnf+/? and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/? mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/? compared to WT mice, but was not influenced by age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/? mice. Body weight did not correlate with any of the three behavioral measures studied. Dopamine neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase, DA transporter (DAT) or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl‐stimulated DA release were reduced in Bdnf+/? mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age.  相似文献   

17.
M-current-mediating KCNQ (Kv7) channels play an important role in regulating the excitability of neuronal cells, as highlighted by mutations in Kcnq2 and Kcnq3 that underlie certain forms of epilepsy. In addition to their expression in brain, KCNQ2 and -3 are also found in the somatosensory system. We have now detected both KCNQ2 and KCNQ3 in a subset of dorsal root ganglia neurons that correspond to D-hair Aδ-fibers and demonstrate KCNQ3 expression in peripheral nerve endings of cutaneous D-hair follicles. Electrophysiological recordings from single D-hair afferents from Kcnq3−/− mice showed increased firing frequencies in response to mechanical ramp-and-hold stimuli. This effect was particularly pronounced at slow indentation velocities. Additional reduction of KCNQ2 expression further increased D-hair sensitivity. Together with previous work on the specific role of KCNQ4 in rapidly adapting skin mechanoreceptors, our results show that different KCNQ isoforms are specifically expressed in particular subsets of mechanosensory neurons and modulate their sensitivity directly in sensory nerve endings.  相似文献   

18.
19.
The function of sensory hair cells of the cochlea and vestibular organs depends on an influx of K+ through apical mechanosensitive ion channels and its subsequent removal over their basolateral membrane. The KCNQ4 (Kv7.4) K+ channel, which is mutated in DFNA2 human hearing loss, is expressed in the basal membrane of cochlear outer hair cells where it may mediate K+ efflux. Like the related K+ channel KCNQ5 (Kv7.5), KCNQ4 is also found at calyx terminals ensheathing type I vestibular hair cells where it may be localized pre- or postsynaptically. Making use of Kcnq4−/− mice lacking KCNQ4, as well as Kcnq4dn/dn and Kcnq5dn/dn mice expressing dominant negative channel mutants, we now show unambiguously that in adult mice both channels reside in postsynaptic calyx-forming neurons, but cannot be detected in the innervated hair cells. Accordingly, whole cell currents of vestibular hair cells did not differ between genotypes. Neither Kcnq4−/−, Kcnq5dn/dn nor Kcnq4−/−/Kcnq5dn/dn double mutant mice displayed circling behavior found with severe vestibular impairment. However, a milder form of vestibular dysfunction was apparent from altered vestibulo-ocular reflexes in Kcnq4−/−/Kcnq5dn/dn and Kcnq4−/− mice. The larger impact of KCNQ4 may result from its preferential expression in central zones of maculae and cristae, which are innervated by phasic neurons that are more sensitive than the tonic neurons present predominantly in the surrounding peripheral zones where KCNQ5 is found. The impact of postsynaptic KCNQ4 on vestibular function may be related to K+ removal and modulation of synaptic transmission.  相似文献   

20.
The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1–7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号