首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Profiles of chlorophyll fluorescence were measured in spinach leaves irradiated with monochromatic light. The characteristics of the profiles within the mesophyll were determined by the optical properties of the leaf tissue and the spectral quality of the actinic light. When leaves were infiltrated with 10?4M DCMU [3‐(3,4‐dichlorophenyl)‐1, 1‐dimethyl‐urea] or water, treatments that minimized light scattering, irradiation with 2000 μmol m?2 s?1 green light produced broad Gaussian‐shaped fluorescence profiles that spanned most of the mesophyll. Profiles for chlorophyll fluorescence in the red (680 ± 16 nm) and far red (λ > 710 nm) were similar except that there was elevated red fluorescence near the adaxial leaf surface relative to far red fluorescence. Fluorescence profiles were narrower in non‐infiltrated leaf samples where light scattering increased the light gradient. The fluorescence profile was broader when the leaf was irradiated on its adaxial versus abaxial surface due to the contrasting optical properties of the palisade and spongy mesophyll. Irradiation with blue, red and green monochromatic light produced profiles that peaked 50, 100 and 150 μm, respectively, beneath the irradiated surface. These results are consistent with previous measurements of the light gradient in spinach and they agree qualitatively with measurements of carbon fixation under monochromatic blue, red and green light. These results suggest that chlorophyll fluorescence profiles may be used to estimate the distribution of quanta that are absorbed within the leaf for photosynthesis.  相似文献   

2.
Ceratium fusus (Ehrenb.) Dujardin was exposed to light of different wavelengths and photon flux densities (PFDs) to examine their effects on mechanically stimulable bioluminescence (MSL). Photoinhibition of MSL was proportional to the logarithm of PFD. Exposure to I μmol photons·m?2s?1 of broadband blue light (ca. 400–500 nm) produced near-complete photoinhibition (≥90% reduction in MSL) with a threshold at ca. 0.01 μmol photons·m?2·s?1. The threshold of photoinhibition was ca. an order of magnitude greater for both broadband green (ca. 500–580 nm) and red light (ca. 660–700 nm). Exposure to narrow spectral bands (ca. 10 nm half bandwidth) from 400 and 700 nm at a PFD of 0.1 μmol photons·m?2·s?1 produced a maximal response of photoinhibition in the blue wavelengths (peak ca. 490 nm). A photoinhibition response (≥ 10%) in the green (ca. 500–540 nm) and red wavelengths (ca. 680 nm) occurred only at higher PFDs (1 and 10 μmol photons·m?2·s?1). The spectral response is similar to that reported for Gonyaulax polyedra Stein and Pyrocystis lunula Schütt and unlike that of Alexandrium tamarense (Lebour) Balech et Tangen. The dinoflagellate's own bioluminescence is two orders of magnitude too low to result in self-photoinhibition. The quantitative relationships developed in the laboratory predict photoinhibition of bioluminescence in populations of C. fusus in the North Atlantic Ocean.  相似文献   

3.
The light-saturated rate of photosynthesis in blue light was 50-100% higher than that in red light for young sporophytes of Laminaria digitata (Huds.) Lamour., although photosynthetic rates were slightly higher in red than in blue light at low irradiances. Short exposures to low irradiances (e.g. 2 min at 20 μmol · m?2· s?1) of blue light also stimulated the subsequent photosynthesis of Laminaria sporophytes in saturating irradiances of red light but had little effect on photosynthesis in low irradiances of red light. The full stimulatory effect of short exposures to blue light was observed within 5 min of the blue treatment and persisted for at least 15 min in red light or in darkness. Thereafter, the effect began to decline, but some stimulation was still detectable 45 min after the blue treatment. The degree of stimulation was proportional to the logarithm of the photon exposure to blue light over the range 0.15-2.4 mmol · m?2, and the effectiveness of an exposure to 0.6 mmol · m?2at different wavelengths was high at 402-475 nm (with a peak at 460-475 nm) but declined sharply at 475-497 nm and was minimal at 544-701 nm. Blue light appears, therefore, to exert a direct effect on the dark reaction of photosynthesis in brown algae, possibly by activating carbon-fixing enzymes or by stimulating the uptake or transport of inorganic carbon in the plants.  相似文献   

4.
Acclimation of the photosynthetic apparatus to light absorbed primarily by phycobilisomes (which transfer energy predominantly to photosystem II) or absorbed by chlorophyll a (mainly present in the antenna of photosystem I) was studied in the macroalga Palmaria palmata L. In addition, the influence of blue and yellow light, exciting chlorophyll a and phycobilisomes, respectively, ivas investigated. All results were compared to a white light control. Complementary chromatic adaptation in terms of an enhanced ratio of phycoerythrin to phycocyanin under green light conditions was observed. Red light (mainly absorbed by chlorophyll a) and green light (mainly absorbed by phycobilisomes) caused an increase of the antenna system, which was not preferentially excited. Yellow and blue light led to intermediate states comparable to each other and white light. Growth was reduced under all light qualities in comparison to white light, especially under conditions preferably exciting phycobilisomes (green light-adapted algae had a 58% lower growth rate compared to white light-adapted algae). Red and blue light-adapted algae showed maximal photosynthetic capacity with white light excitation and significantly lower values with green light excitation. In contrast, green and yellow light-adapted algae exhibited comparable photosynthetic capacities at all excitation wavelengths. Low-temperature fluorescence emission analysis showed an increase of photosystem II emission in red light-adapted algae and a decrease in green light-adapted algae. A small increase of photosystem I emission teas also found in green light-adapted algae, but this was much less than the photosystem II emission increase observed in red light-adapted algae (both compared to phycobilisome emission). Efficiency of energy transfer from phycobilisomes to photosystem II was higher in red than in green light-adapted algae. The opposite was found for the energy transfer efficiency from phycobilisomes to photosystem I. Zeaxanthin content increased in green and blue light-adapted algae compared to red, white, and yellow light-adapted algae. Results are discussed in comparison to published data on unicellular red algae and cyanobacteria.  相似文献   

5.
The thylakoids of the thermophilic cyanobacterium Mastigocladus laminosus were examined by freeze-fracture analysis. The expolasmatic (EF)-freeze-fracture particles are organized in rows, separated by 45 nm or more with a 12-nm center-tocenter spacing of neighboring particles. Phycobilisomes, associated to the outer thylakoid surfaces show a similar spacing pattern. Fractures exposing simultaneously phycobilisomes and EF-freeze-fracture particles on the same thylakoid show a direct alignment of both systems. Consequently the phycobilisomes are concluded to be associated peripherally on top of the EF-freeze-fracture particles in a 1:1 assembly pattern. The periodicity of the EF-freeze-fracture particles determines the arrangement of the phycobilisomes in the rows. The planar phycobilisome model of Mörschel et al. (1977) easily allows a successive arrangement of the phycobilisomes in a row, whereas with the staggered model developed by Bryant et al. (1979), only a cogged arrangement of neighboring phycobilisomes is possible.  相似文献   

6.
Abstract In normal air, illumination with a low level of blue or red light (40 μmol m?2 s?1) did not induce stomatal opening in maize plantlets. In CO2-free air, 40 μmol m?2 s?1 of blue or red light promoted an enhancement in stomatal opening. At the same quantum flux, blue light was more efficient than red light and stomatal closure occurred more rapidly with a significantly shorter lag phase after blue light. Anoxia inhibited light-dependent stomatal opening, even under 320 μmol m?2 s?1 illumination. However, after 60 min of illumination with 40 μmol m?2 s?1 of blue light in anoxia, transient stomatal opening was observed when the plant was returned to darkness and normal air. This transient stomatal opening was weaker after pretreatment with red light. We conclude that a blue-light-dependent process induced under anoxia leads to stomatal opening provided oxygen is present. Possible mechanisms associated with blue-light-effect and the nature of the oxygen-consuming processes are discussed.  相似文献   

7.
The cyanelles of Cyanophora paradoxa Korsch. are photosynthetically active obligate endosymbionts in which phycobiliproteins serve as the major accessory pigments. Freeze-fracture electron micrographs of thylakoids in isolated cyanelles reveal long parallel rows of particles covering most of the E-face, while a more random particle arrangement is evident in some areas. The center-to-center spacing of particles within these rows is about 10 nanometers. Their mean diameter was measured at 9.4 nanometers. The particles on the P-face have a mean diameter of 7.2 nanometers. Thylakoids that retained nearly the full complement of phycobiliproteins (determined spectrophotometrically and by gel electrophoresis) were isolated from the cyanelles. In thin sections of these preparations, rows of disc-shaped phycobilisomes are evident on the surface of the thylakoids. The spacing of the rows of phycobilisomes corresponds to that of the rows of E-face particles (approximately 45 nanometers, center to center). The periodicity of the disc-shaped phycobilisomes within a row is 10 nanometers suggesting a one-to-one association between phycobilisomes and E-face particles.

In addition, visualization of the protoplasmic surface (PS) of isolated thylakoids by freeze-etch electron microscopy shows that rows of disc-shaped phycobilisomes are aligned directly above rows of particles exhibiting two subunits, presumably the P-surface projections of the 10-nanometer intramembrane particles. These observations, together with earlier studies indicating that the 10-nanometer E-face particles probably represent photosystem II (PSII) complexes, suggest that phycobilisomes are positioned on the thylakoid surface in direct contact with PSII centers within the thylakoid membrane.

The inner envelope membrane of the cyanelles, observed in freeze-fracture replicas, resembles cyanobacterial plasma membranes and is dissimilar to the chloroplast envelope membranes of red or green algae. The envelope of isolated cyanelles exhibits two additional layers: (a) a 5- to 7-nanometer-thick layer that lies adjacent to the inner membrane and which seems to correspond to the peptidoglycan layer of cyanobacteria; and (b) a layer external to the purported peptidoglycan layer that exhibits fracture faces similar to those of the lipopolysaccharide layer of gram negative bacteria. Our findings indicate that the supramolecular architecture of cyanelles differs only slightly from free-living cyanobacteria to which they are presumably related.

  相似文献   

8.
Stomatal responses to light of Arabidopsis thaliana wild-type plants and mutant plants deficient in starch (phosphoglucomutase deficient) were compared in gas exchange experiments. Stomatal density, size and ultrastructure were identical for the two phenotypes, but no starch was observed in guard cells of the mutant plants whatever the time of day. The overall extent of changes in stomatal conductance during 14 h light–10 h dark cycles was similar for the two phenotypes. However, the slow endogenous stomatal opening occurring in darkness in the wild type was not observed in the mutant plants. Stomata in the mutant plants responded much more slowly to blue light (70 μmol m?2 s?1) though the response to red light (250 μmol m?2 s?1) was similar to that of wild-type plants. In paradermal sections, stomatal responses to red light (300 μmol m?2 s?1) were weak for wild-type plants as well as for mutant plants. Stomatal opening was greater under low blue light (75 μmol m?2 s?1) than under red light for the two genotypes. However, in mutant plants, a high chloride concentration (50 mol m?3) was necessary to achieve the same stomatal aperture as observed for the wild-type plants. These results suggest that starch metabolism, via the synthesis of a counter-ion to potassium (probably malate), is required for full stomatal response to blue light but is not involved in the stomatal response to red light.  相似文献   

9.
Growth and pigment concentrations of the, estuarine dinoflagellate, Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., were measured in cultures grown in white, blue, green and red radiation at three different irradiances. White irradiances (400–800 nm) were 13.4, 4.0 and 1.8 W · m?2 with photon flux densities of 58.7 ± 3.5, 17.4 ± 0.6 and 7.8 ± 0.3 μM quanta · m?2· s?1, respectively. All other spectral qualities had the same photon flux densities. Concentrations of chlorophyll a and chlorophyll c were inversely related to irradiance. A decrease of 7- to 8-fold in photon flux density resulted in a 2-fold increase in chlorophyll a and c and a 1.6- to 2.4-fold increase in both peridinin and total carotenoid concentrations. Cells grown in green light contained 22 to 32% more peridinin per cell and exhibited 10 to 16% higher peridinin to chlorophyll a ratios than cells grown in white light. Growth decreased as a function of irradiance in white, green and red light grown cells but was the same at all blue light irradiances. Maximum growth rates occurred at 8 μM quanta · m?2· s?1 in blue light, while in red and white light maximum growth rates occurred at considerably higher photon flux densities (24 to 32 μM quanta · m?2· s?1). The fastest growth rates occurred in blue and red radiation. White radiation producing maximum growth was only as effective as red and blue light when the photon flux density in either the red or blue portion of the white light spectrum was equivalent to that of a red or of blue light treatment which produced maximum growth rates. These differences in growth and pigmentation indicate that P. mariae-lebouriae responds to the spectral quality under which it is grown.  相似文献   

10.
Several studies have described that cyanobacteria use blue light less efficiently for photosynthesis than most eukaryotic phototrophs, but comprehensive studies of this phenomenon are lacking. Here, we study the effect of blue (450 nm), orange (625 nm), and red (660 nm) light on growth of the model cyanobacterium Synechocystis sp. PCC 6803, the green alga Chlorella sorokiniana and other cyanobacteria containing phycocyanin or phycoerythrin. Our results demonstrate that specific growth rates of the cyanobacteria were similar in orange and red light, but much lower in blue light. Conversely, specific growth rates of the green alga C. sorokiniana were similar in blue and red light, but lower in orange light. Oxygen production rates of Synechocystis sp. PCC 6803 were five-fold lower in blue than in orange and red light at low light intensities but approached the same saturation level in all three colors at high light intensities. Measurements of 77 K fluorescence emission demonstrated a lower ratio of photosystem I to photosystem II (PSI:PSII ratio) and relatively more phycobilisomes associated with PSII (state 1) in blue light than in orange and red light. These results support the hypothesis that blue light, which is not absorbed by phycobilisomes, creates an imbalance between the two photosystems of cyanobacteria with an energy excess at PSI and a deficiency at the PSII-side of the photosynthetic electron transfer chain. Our results help to explain why phycobilisome-containing cyanobacteria use blue light less efficiently than species with chlorophyll-based light-harvesting antennae such as Prochlorococcus, green algae and terrestrial plants.  相似文献   

11.
The biochemical properties of Spirulina platensis in an internally illuminated photobioreactor (IlPBR) were investigated under different light-emitted diode (LED) wavelengths; blue (λmax= 450 and 460 nm), green (λmax= 525 nm), red (λmax = 630 and 660 nm), and white (6,500K), with various light intensities (200, 500, 1,000, and 2,000 μmol/m2/sec) were examined. The highest specific growth rate, maximum biomass, and phycocyanin productivity occurred under the red LEDs (0.39/day, 0.10 g/L/day, and 0.14 g/g-cell/day, respectively) at 1,000 μmol/m2/sec; the lowest growth rate was obtained under blue LEDs. Indeed, the size of trichomes was changed into short form under blue LEDs at all light intensities or all LEDs at 2,000 μmol/m2/sec for the first 2 days after inoculation, and S. platensis did not grow in the IlPBR under the dark condition. These results provide a base for different approaches for designing the pilot scale photobioreactor and developing cost-effective light sources.  相似文献   

12.
In white light of 33.2 μmol . m?2 . s?1 oxygen evolution of Chlorella kessleri is about 30 % higher after growth in blue light than after growth in red light of the same quantum fluence rate. When determined by the light-induced absorbance change at γ 820 nm, blue light-adapted cells possess about 60% more reaction centres per total chlorophyll in photosystem II. Correspondingly, the cells exhibit about 30% more Hill activity of PS II. Conversely, red light-adapted cells contain relatively more reaction centres and higher electron flow capacities of photosystem I. The distribution of total chlorophyll among the pigment-protein complexes, CPI, CPIa, CPa, and LHC II, corresponds to these data. There is more chlorophyll associated with the light-harvesting complex of PS II, LHC II, in cells under blue light conditions, but more chlorophyll bound to both complexes of PS I, CPI and CPIa, in cells under red light conditions. The respective ratios of chlorophyll a/chlorophyll b of all complexes are identical for blue and red light-adapted cells. This results in a higher relative amount of chlorophyll b in blue light-adapted cells. Total carotenoids per total chlorophyll are increased by 20% in red light-adapted cells. Their distribution among the pigment-protein complexes is unknown, however the ratios of lutein, neoxanthin and violaxanthin extractable from LHC II are different in blue (32.1:35.9:32.0) and in red (51.4:26.7:21.9) light-adaptod cells.  相似文献   

13.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

14.
The red alga Acrosymphton purpuriferum (J. Ag.) Sjöst. (Dumontiaceae) is a short day plant in the formation of its tetrasporangia. Tetrasporogenesis was not inhibited by 1 h night-breaks when given at any time during the long (16 h) dark period (tested at 2 h intervals). However, tetrasporogenesis was inhibited when short (8 h) main photoperiods were extended beyond the critical daylength with supplementary light periods (8 h) at an irradiance below photosynthetic compensation. The threshold irradiance below photosynthetic compensation. The threshold irradiance for inhibition of tetrasporogenesis was far lower when supplementary light periods preceded the main photoperiod than when they followed it (< 0.05 μmol.m−2. s−1 vs. 3 μmol.m−2.s−1. The threshold level also depended on the irradiance given during the main photoperiod and was higher after a main photoperiod in bright light than after one in dim light (threshold at 3 μmol.m−2.s−1 after a main photoperiod at ca. 65 μmol.m−2.s−1 vs. threshold at <0.5 μmol.m−2.s−1 after a main photoperiod at ca. 35 μmol.m−2.s−1. The spectral dependence of the response was investigated in day-extensions (supplementary light period (8 h) after main photoperiod (8 h) at 48 μmol. m−2.s−1) with narrow band coloured light. Blue light (λ= 420 nm) was most effective, with 50% inhibition at a quantum-dose of 2.3 mmol.m−2. However, yellow (λ= 563 nm) and red light (λ= 600 nm; λ= 670 nm) also caused some inhibition, with ca. 30% of the effectiveness of blue light. Only far-red light (λ= 710 nm; λ= 730 nm) was relatively ineffective with no significant inhibition of tetrasporogenesis at quantum-doses of up to 20 mmol. m−2.  相似文献   

15.
The red alga Acrosymphyton purpuriferum (J. Ag.) Sjöst. (Dumontiaceae) is a short day plant in the formation of its tetrasporangia. Tetrasporogenesis was not inhibited by 1 h night-breaks when given at any time during the long (16 h) dark period (tested at 2 h intervals). However, tetrasporogenesis was inhibited when short (8 h) main photoperiods were extended beyond the critical daylength with supplementary light periods (8 h) at an irradiance below photosynthetic compensation. The threshold irradiance for inhibition of tetrasporogenesis was far lower when supplementary light periods preceded the main photoperiod than when they followed it (<0.05 μmol·m−2·s−1 vs. 3 μmol·m−2·s−1). The threshold level also depended on the irradiance given during the main photoperiod and was higher after a main photoperiod in bright light than after one in dim light (threshold at 3 μmol·m−2·s−1 after a main photoperiod at ca. 65 μmol·m−2·s−1 vs. threshold at <0.5 μmol·m−2·s−1 after a main photoperiod at ca. 35 μmol·m−2·s−1). The spectral dependence of the response was investigated in day-extensions (supplementary light period (8 h) after main photoperiod (8 h) at 48 μmol·m−2·s−1) with narrow band coloured light. Blue light (λ= 420 nm) was most effective, with 50% inhibition at a quantum-dose of 2.3 mmol·m−2. However, yellow (λ= 563 nm) and red light (λ= 600 nm; λ= 670 nm) also caused some inhibition, with ca. 30% of the effectiveness of blue light. Only far-red light (λ= 710 nm; λ= 730 nm) was relatively ineffective with no significant inhibition of tetrasporogenesis at quantum-doses of up to 20 mmol·m−2.  相似文献   

16.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

17.
Sporangiophores of the zygomycete fungus Phycomyces blakesleeanus are sensitive to near UV and blue light. The quantum effectiveness of yellow and red light is more than 6 orders of magnitude below that of near UV or blue light. Phototropism mutants with a defect in the gene madC are about 106 times less sensitive to blue light than the wild type. These mutants respond, however, to yellow and red light when the long wavelength light is given simultaneously with actinic blue light. In the presence of yellow or red light the photogravitropic threshold of madC mutants is lowered about 100-fold though the yellow and the red light alone are phototropically ineffective. A step-up of the fluence rate of broad-band red light (> 600 nm) from 6 × 10?3 to 6W m?2 elicits, in mutant C 148 madC, a transient deceleration of the growth rate. The growth rate of the wild type is not affected by the same treatment. The results are interpreted in terms of a red light absorbing intermediate of the blue light photoreceptor of Phycomyces. The intermediate should be short-lived in the wild type and should accumulate in madC mutants.  相似文献   

18.
Synergisms between a physiologically patterned magnetic field that is known to enhance planarian growth and suppress proliferation of malignant cells in culture and three light emitting diode (LED) generated visible wavelengths (blue, green, red) upon planarian regeneration and melanoma cell numbers were discerned. Five days of hourly exposures to either a physiologically patterned (2.5–5.0 μT) magnetic field, one of three wavelengths (3 kLux) or both treatments simultaneously indicated that red light (680 nm), blue light (470 nm) or the magnetic field significantly facilitated regeneration of planarian compared to sham field exposed planarian. Presentation of both light and magnetic field conditions enhanced the effect. Whereas the blue and red light diminished the growth of malignant (melanoma) cells, the effect was not as large as that produced by the magnetic field. Only the paired presentation of the blue light and magnetic field enhanced the suppression. On the other hand, the changes following green light (540 nm) exposure did not differ from the control condition and green light presented with the magnetic field eliminated its effects for both the planarian and melanoma cells. These results indicate specific colors affect positive adaptation that is similar to weak, physiologically patterned frequency modulated (8–24 Hz) magnetic fields and that the two forms of energy can synergistically summate or cancel.  相似文献   

19.
Photoperiodic lighting can promote flowering of long‐day plants (LDPs) and inhibit flowering of short‐day plants (SDPs). Red (R) and far‐red (FR) light regulate flowering through phytochromes, whereas blue light does so primarily through cryptochromes. In contrast, the role of green light in photoperiodic regulation of flowering has been inconsistent in previous studies. We grew four LDP species (two petunia cultivars, ageratum, snapdragon and Arabidopsis) and two SDP species (three chrysanthemum cultivars and marigold) in a greenhouse under truncated 9‐h short days with or without 7‐h day‐extension lighting from green light (peak = 521 nm) at 0, 2, 13 or 25 μmol m?2 s?1 or R + white (W) + FR light at 2 μmol m?2 s?1. Increasing the green photon flux density from 0 to 25 μmol m?2 s?1 accelerated flowering of all LDPs and delayed flowering of all SDPs. Petunia flowered similarly fast under R + W + FR light and moderate green light but was shorter and developed more branches under green light. To be as effective as R + W + FR light, saturation green photon flux densities were 2 μmol m?2 s?1 for LDP ageratum and SDP marigold and 13 μmol m?2 s?1 for LDP petunia. Snapdragon was the least sensitive to green light. In Arabidopsis, cryptochrome 2 mediated promotion of flowering under moderate green light, whereas both phytochrome B and cryptochrome 2 mediated that under R + W + FR light. We conclude that 7‐h day‐extension lighting from green light‐emitting diodes can control flowering of photoperiodic ornamentals and that in Arabidopsis, cryptochrome 2 mediates promotion of flowering under green light.  相似文献   

20.
Phycobiliproteins produced in dark-grown cells of Tolypothrix tenuis Kützing formed Phycobilisomes functionally capable of energy transfer. The phycobilisomes could be recovered in high yield (80% of extracted phycobiliproteins). Phycobilisomes from cells grown without light and in red light had the same size, morphology, and spectral characteristics. They had a phycocyanin to allophycocyanin malar ratio of 3:1. Phycocyanin and allophycocyanin in phycobilisomes were energetically coupled as indicated by their fluorescence emission (maximum of ca. 690 nm at –196° C) and excitation spectra. Phycobilisomes were attached to the outer surface of thylakoids and were hemidiscoidal in shape. In thin sections they had a diameter of 42 ± 3nm, a height of 24 ± 4 nm and a thickness of 10 ± 2 nm. Isolated and negatively stained Phycobilisomes were larger with a diameter of 51 ± 2 nm and height of 33 ± 2 nm, Isolated phycobilisomes in face view had a central core of three units and six peripheral rods. Each rod appeared to be composed of three hexamers (three double discs), consistent with the observed dimensions and substructure. After Phycoerythria synthesis was induced by a 15 min green light exposure, phycobilisomes of dark-grown cells exhibited energy transfer from phycoerythrin to a long wavelength allophycocyanin, indicating that phycoerythrin synthesized in darkness was incorporated into functional phycobilisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号