首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity.  相似文献   

2.
It is crucial to the eucaryotic cell cycle that the centrosome undergo precise duplication to generate the two poles of the mitotic spindle. In the budding yeast Saccharomyces cerevisiae, centrosomal functions are provided by the spindle pole body (SPB), which is duplicated at the time of bud emergence in G1 of the cell cycle. Genetic control of this process has previously been revealed by the characterization of mutants in CDC31 and KAR1, which prevent SPB duplication and lead to formation of a monopolar spindle. Newly isolated mutations described here (mps1 and mps2, for monopolar spindle) similarly cause monopolar mitosis but their underlying effects on SPB duplication are unique. The MPS1 gene is found by electron microscopy to be essential for proper formation of the site at which the new SPB normally arises adjacent to the existing one. By contrast, a mutation in MPS2 permits duplication to proceed, but the newly formed SPB is structurally defective and unable to serve as a functional spindle pole. Distinct temporal requirements for the CDC31, MPS1, and MPS2 gene functions during the SPB duplication cycle further demonstrate the individual roles of these genes in the morphogenetic pathway.  相似文献   

3.
Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression.  相似文献   

4.
During meiosis, the centrosome/spindle pole body (SPB) must be regulated in a manner distinct from that of mitosis to achieve a specialized cell division that will produce gametes. In this paper, we demonstrate that several SPB components are localized to SPBs in a meiosis-specific manner in the fission yeast Schizosaccharomyces pombe. SPB components, such as Cut12, Pcp1, and Spo15, which stay on the SPB during the mitotic cell cycle, disassociate from the SPB during meiotic prophase and then return to the SPB immediately before the onset of meiosis I. Interestingly, the polo kinase Plo1, which normally localizes to the SPB during mitosis, is excluded from them in meiotic prophase, when meiosis-specific, horse-tail nuclear movement occurs. We found that exclusion of Plo1 during this period was essential to properly remodel SPBs, because artificial targeting of Plo1 to SPBs resulted in an overduplication of SPBs. We also found that the centrin Cdc31 was required for meiotic SPB remodeling. Thus Plo1 and a centrin play central roles in the meiotic SPB remodeling, which is essential for generating the proper number of meiotic SPBs and, thereby provide unique characteristics to meiotic divisions.  相似文献   

5.
Budding yeast polo kinase Cdc5p localizes to the spindle pole body (SPB) and to the bud-neck and plays multiple roles during M-phase progression. To dissect localization-specific mitotic functions of Cdc5p, we tethered a localization-defective N-terminal kinase domain of Cdc5p (Cdc5pDeltaC) to the SPB or to the bud-neck with components specifically localizing to one of these sites and characterized these mutants in a cdc5Delta background. Characterization of a viable, SPB-localizing, CDC5DeltaC-CNM67 mutant revealed that it is defective in timely degradation of Swe1p, a negative regulator of Cdc28p. Loss of BFA1, a negative regulator of mitotic exit, rescued the lethality of a neck-localizing CDC5DeltaC-CDC12 or CDC5DeltaC-CDC3 mutant but yielded severe defects in cytokinesis. These data suggest that the SPB-associated Cdc5p activity is critical for both mitotic exit and cytokinesis, whereas the bud neck-localized Cdc5p is required for proper Swe1p regulation. Interestingly, a cdc5Delta bfa1Delta swe1Delta triple mutant is viable but grows slowly, whereas cdc5Delta cells bearing both CDC5DeltaC-CNM67 and CDC5DeltaC-CDC12 grow well with only a mild cell cycle delay. Thus, SPB- and the bud-neck-localized Cdc5p control most of the critical Cdc5p functions and downregulation of Bfa1p and Swe1p at the respective locations are two critical factors that require Cdc5p.  相似文献   

6.
Summary Changes in the spindle pole body (SPB) and meiotic nuclei from interphase I through interphase II in the hollyhock rustPuccinia malvacearum are analyzed ultrastructurally by three-dimensional reconstructions from serial sections. Interphase I nuclei undergo a coordinated migration and rotation during which the SPBs approach the convex face of the lateral promycelial wall. During the transition from interphase I to prometaphase II, the collateral disc (co-disc) apparently enlarges and fuses with the main disc of the SPB. The resulting single SPB nucleates two confluent half spindles and about 225 astral microtubules (MTs). Co-discs and middle pieces (MPs) are absent during division II. SPBs separate and form metaphase II intranuclear spindles oriented in a predictable manner. Tubular cisternae are present within the spindle at early metaphase II. The architecture of the spindle at division II is essentially identical to that reported for division I except that the spindle is about half as long. Anaphase-telophase II nuclear envelope constriction, separation of the sibling nuclei, and externalization of the SPBs is identical to that reported for division I. Genesis of the duplicated interphase II SPB apparently occurs rapidly and involves formation of the MP followed by the three-layered SPB discs. General aspects of the division II spindle are discussed. A model for the meiotic SPB cycle in a rust is presented and its phylogenetic and functional significance in relation to other basidiomycetes and ascomycetes is discussed.  相似文献   

7.
Successful progression through the cell cycle requires the coupling of mitotic spindle formation to DNA replication. In this report we present evidence suggesting that, inSaccharomyces cerevisiae, theCDC40 gene product is required to regulate both DNA replication and mitotic spindle formation. The deduced amino acid sequence ofCDC40 (455 amino acids) contains four copies of a β-transducin-like repeat. Cdc40p is essential only at elevated temperatures, as a complete deletion or a truncated protein (deletion of the C-terminal 217 amino acids in thecdc40-1 allele) results in normal vegetative growth at 23°C, and cell cycle arrest at 36°C. In the mitotic cell cycle Cdc40p is apparently required for at least two steps: (1) for entry into S phase (neither DNA synthesis, nor mitotic spindle formation occurs at 36°C and (2) for completion of S-phase (cdc40::LEU2 cells cannot complete the cell cycle when returned to the permissive temperature in the presence of hydroxyurea). The role of Cdc40p as a regulatory protein linking DNA synthesis, spindle assembly/maintenance, and maturation promoting factor (MPF) activity is discussed.  相似文献   

8.
During meiosis, DNA replication is followed by two consecutive rounds of chromosome segregation. Cells lacking the protein phosphatase CDC14 or its regulators, SPO12 and SLK19, undergo only a single meiotic division, with some chromosomes segregating reductionally and others equationally. We find that this abnormal chromosome behavior is due to an uncoupling of meiotic events. Anaphase I spindle disassembly is delayed in cdc14-1, slk19Delta, or spo12Delta mutants, but the chromosome segregation cycle continues, so that both meiotic chromosome segregation phases take place on the persisting meiosis I spindle. Our results show that Cdc14, Slk19, and Spo12 are not only required for meiosis I spindle disassembly but also play a pivotal role in establishing two consecutive chromosome segregation phases, a key feature of the meiotic cell cycle.  相似文献   

9.
Accurate duplication of the Saccharomyces cerevisiae spindle pole body (SPB) is required for formation of a bipolar mitotic spindle. We identified mutants in SPB assembly by screening a temperature-sensitive collection of yeast for defects in SPB incorporation of a fluorescently marked integral SPB component, Spc42p. One SPB assembly mutant contained a mutation in a previously uncharacterized open reading frame that we call MPS3 (for monopolar spindle). mps3-1 mutants arrest in mitosis with monopolar spindles at the nonpermissive temperature, suggesting a defect in SPB duplication. Execution point experiments revealed that MPS3 function is required for the first step of SPB duplication in G1. Like cells containing mutations in two other genes required for this step of SPB duplication (CDC31 and KAR1), mps3-1 mutants arrest with a single unduplicated SPB that lacks an associated half-bridge. MPS3 encodes an essential integral membrane protein that localizes to the SPB half-bridge. Genetic interactions between MPS3 and CDC31 and binding of Cdc31p to Mps3p in vitro, as well as the fact that Cdc31p localization to the SPB is partially dependent on Mps3p function, suggest that one function for Mps3p during SPB duplication is to recruit Cdc31p, the yeast centrin homologue, to the half-bridge.  相似文献   

10.
Successful progression through the cell cycle requires the coupling of mitotic spindle formation to DNA replication. In this report we present evidence suggesting that, inSaccharomyces cerevisiae, theCDC40 gene product is required to regulate both DNA replication and mitotic spindle formation. The deduced amino acid sequence ofCDC40 (455 amino acids) contains four copies of a -transducin-like repeat. Cdc40p is essential only at elevated temperatures, as a complete deletion or a truncated protein (deletion of the C-terminal 217 amino acids in thecdc40-1 allele) results in normal vegetative growth at 23°C, and cell cycle arrest at 36°C. In the mitotic cell cycle Cdc40p is apparently required for at least two steps: (1) for entry into S phase (neither DNA synthesis, nor mitotic spindle formation occurs at 36°C and (2) for completion of S-phase (cdc40::LEU2 cells cannot complete the cell cycle when returned to the permissive temperature in the presence of hydroxyurea). The role of Cdc40p as a regulatory protein linking DNA synthesis, spindle assembly/maintenance, and maturation promoting factor (MPF) activity is discussed.  相似文献   

11.
The Saccharomyces cerevisiae centrosome or spindle pole body (SPB) is a dynamic structure that is remodeled in a cell cycle dependent manner. The SPB increases in size late in the cell cycle and during most cell cycle arrests and exchanges components during G1/S. We identified proteins involved in the remodeling process using a strain in which SPB remodeling is conditionally induced. This strain was engineered to express a modified SPB component, Spc110, which can be cleaved upon the induction of a protease. Using a synthetic genetic array analysis, we screened for genes required only when Spc110 cleavage is induced. Candidate SPB remodeling factors fell into several functional categories: mitotic regulators, microtubule motors, protein modification enzymes, and nuclear pore proteins. The involvement of candidate genes in SPB assembly was assessed in three ways: by identifying the presence of a synthetic growth defect when combined with an Spc110 assembly defective mutant, quantifying growth of SPBs during metaphase arrest, and comparing distribution of SPB size during asynchronous growth. These secondary screens identified four genes required for SPB remodeling: NUP60, POM152, and NCS2 are required for SPB growth during a mitotic cell cycle arrest, and UBC4 is required to maintain SPB size during the cell cycle. These findings implicate the nuclear pore, urmylation, and ubiquitination in SPB remodeling and represent novel functions for these genes.  相似文献   

12.
MPM-2 is a monoclonal antibody that interacts with mitosis-specific phosphorylated proteins in many different organisms. Immunocytochemistry of tissue culture cells has shown that MPM-2 stains centrosomes, chromosomes, kinetochores, and spindles. In this paper, we demonstrate that MPM-2 staining colocalizes with the spindle pole body (SPB) of Aspergillus nidulans and that SPB staining varies during the mitotic cycle. In an unsynchronized population, about one-fourth to one-third of the cells stain with MPM-2 at the spindle plaques or SPBs. Nuclei in mitosis have two SPBs localized at the ends of the spindle, both of which stain with MPM-2. To determine when MPM-2 staining appears, we have examined the effects of temperature-sensitive cell-cycle mutations that block nuclear division in S or G2. Only a very small fraction of cells blocked in S-phase stain with MPM-2. In contrast, a large fraction of cells blocked in G2 stain brightly at the SPB. These data suggest that MPM-2 reactivity of SPBs appears in G2. Moreover, the fact that cells blocked in G2 showed MPM-2 staining but no spindles suggests that reactivity of SPBs occurs prior to mitosis but is not sufficient to trigger spindle formation. When G2-blocked cells were downshifted to permissive temperature, they generated a mitotic spindle with an SPB at each end. Both SPBs stained with MPM-2 in all of the mitotic cells.  相似文献   

13.
Accurate chromosome segregation depends on proper assembly and function of the kinetochore and the mitotic spindle. In the budding yeast, Saccharomyces cerevisiae, the highly conserved protein kinase Mps1 has well-characterized roles in spindle pole body (SPB, yeast centrosome equivalent) duplication and the mitotic checkpoint. However, an additional role for Mps1 is suggested by phenotypes of MPS1 mutations that include genetic interactions with kinetochore mutations and meiotic chromosome segregation defects and also by the localization of Mps1 at the kinetochore, the latter being independent of checkpoint activation. We have developed a new MPS1 allele, mps1-as1, that renders the kinase specifically sensitive to a cell-permeable ATP analog inhibitor, allowing us to perform high-resolution execution point experiments that identify a novel role for Mps1 subsequent to SPB duplication. We demonstrate, by using both fixed- and live-cell fluoresence techniques, that cells lacking Mps1 function show severe defects in mitotic spindle formation, sister kinetochore positioning at metaphase, and chromosome segregation during anaphase. Taken together, our experiments are consistent with an important role for Mps1 at the kinetochore in mitotic spindle assembly and function.  相似文献   

14.
Unlike somatic cells mitosis, germ cell meiosis consists of 2 consecutive rounds of division that segregate homologous chromosomes and sister chromatids, respectively. The meiotic oocyte is characterized by an absence of centrioles and asymmetric division. Centriolin is a relatively novel centriolar protein that functions in mitotic cell cycle progression and cytokinesis. Here, we explored the function of centriolin in meiosis and showed that it is localized to meiotic spindles and concentrated at the spindle poles and midbody during oocyte meiotic maturation. Unexpectedly, knockdown of centriolin in oocytes with either siRNA or Morpholino micro-injection, did not affect meiotic spindle organization, cell cycle progression, or cytokinesis (as indicated by polar body emission), but led to a failure of peripheral meiotic spindle migration, large polar body emission, and 2-cell like oocytes. These data suggest that, unlike in mitotic cells, the centriolar protein centriolin does not regulate cytokinesis, but plays an important role in regulating asymmetric division of meiotic oocytes.  相似文献   

15.
BACKGROUND: The importance of mitotic spindle checkpoint control has been well established during somatic cell divisions. The metaphase-to-anaphase transition takes place only when all sister chromatids have been properly attached to the bipolar spindle and are aligned at the metaphase plate. Failure of this checkpoint may lead to unequal separation of sister chromatids. On the contrary, the existence of such a checkpoint during the first meiotic division in mammalian oocytes when homologous chromosomes are segregated has remained controversial. RESULTS: Here, we show that mouse oocytes respond to spindle damage by a transient and reversible cell cycle arrest in metaphase I with high Maturation Promoting Factor (MPF) activity. Furthermore, the mitotic checkpoint protein Mad2 is present throughout meiotic maturation and is recruited to unattached kinetochores. Overexpression of Mad2 in meiosis I leads to a cell cycle arrest in metaphase I. Expression of a dominant-negative Mad2 protein interferes with proper spindle checkpoint arrest. CONCLUSIONS: Errors in meiosis I cause missegregation of chromosomes and can result in the generation of aneuploid embryos with severe birth defects. In human oocytes, failures in spindle checkpoint control may be responsible for the generation of trisomies (e.g., Down Syndrome) due to chromosome missegregation in meiosis I. Up to now, the mechanisms ensuring correct separation of chromosomes in meiosis I remained unknown. Our study shows for the first time that a functional Mad2-dependent spindle checkpoint exists during the first meiotic division in mammalian oocytes.  相似文献   

16.
A role for centrin 3 in centrosome reproduction   总被引:9,自引:0,他引:9       下载免费PDF全文
Centrosome reproduction by duplication is essential for the bipolarity of cell division, but the molecular basis of this process is still unknown. Mutations in Saccharomyces cerevisiae CDC31 gene prevent the duplication of the spindle pole body (SPB). The product of this gene belongs to the calmodulin super-family and is concentrated at the half bridge of the SPB. We present a functional analysis of HsCEN3, a human centrin gene closely related to the CDC31 gene. Transient overexpression of wild-type or mutant forms of HsCen3p in human cells demonstrates that centriole localization depends on a functional fourth EF-hand, but does not produce mitotic phenotype. However, injection of recombinant HsCen3p or of RNA encoding HsCen3p in one blastomere of two-cell stage Xenopus laevis embryos resulted in undercleavage and inhibition of centrosome duplication. Furthermore, HsCEN3 does not complement mutations or deletion of CDC31 in S. cerevisiae, but specifically blocks SPB duplication, indicating that the human protein acts as a dominant negative mutant of CDC31. Several lines of evidence indicate that HsCen3p acts by titrating Cdc31p-binding protein(s). Our results demonstrate that, in spite of the large differences in centrosome structure among widely divergent species, the centrosome pathway of reproduction is conserved.  相似文献   

17.
The Aspergillus nidulans bimA gene is required for mitosis. Loss of function mutations in bimA cause cells to arrest growth with condensed chromatin and a short, metaphaselike mitotic spindle. bimA is a member of a gene family defined by a repeated motif called the Tetratrico Peptide Repeat (TPR), which is found in genes from bacteria, yeast and insects. Several yeast TPR genes are also required for mitosis, including Saccharomyces cerevisiae CDC27 and Schizosaccharomyces pombe nuc2+, which appear to be functional homologs of bimA. We have developed antisera specific to the bimA protein (BIMA) and have characterized BIMA by western blot and immunocytochemical analyses. BIMA is heterogeneous in apparent molecular weight, consisting of a major 90-kD species and at least two minor species of approximately 105 kD. The results of BIMA localization by immunofluorescence microscopy depend on the level of BIMA expression. Overexpression of BIMA, which had no deleterious affect on growth or mitosis, resulted in localization of BIMA on or throughout most nuclei. Nuclear staining was granular, and overlapped but was not completely coincident with DNA staining by DAPI. In contrast, when expressed at normal levels, BIMA colocalized with the spindle pole body (SPB). BIMA localized to the SPB in a cell cycle independent manner. These results show that BIMA is either associated with or is a component of the SPB, and they suggest that BIMA functions at the spindle poles to promote the onset of anaphase.  相似文献   

18.
Centrosomes of vertebrate cells and spindle pole bodies (SPBs) of fungi were first recognized through their ability to organize microtubules. Recent studies suggest that centrosomes and SPBs also have a function in the regulation of cell cycle progression, in particular in controlling late mitotic events. Regulators of mitotic exit and cytokinesis are associated with the SPB of budding and fission yeast. Elucidation of the molecular roles played by these regulators is helping to clarify the function of the SPB in controlling progression though mitosis.  相似文献   

19.
The fission yeast spindle pole body (SPB) is a nucleus-associated organelle that duplicates once each cell cycle during interphase. Duplicated SPBs serve as the poles of an intranuclear mitotic spindle after their insertion into the nuclear envelope in mitosis (Ding et al., Mol. Biol. Cell 8, 1461-1479). Here, we report the identification and characterization of Schizosaccharomyces pombe cdc31p, a member of the conserved calcium-binding centrin/CDC31 family. Immunofluorescence and immunoelectron microscopy show that cdc31p is a SPB component localized at the half-bridge structure of the SPB. cdc31 is an essential gene and Deltacdc31 cells and cdc31 conditional mutant cells arrest in mitosis with a monopolar mitotic spindle organized from a single SPB. EM analysis demonstrates that mutant cdc31 cells fail to duplicate the SPB. In addition, cdc31p exhibits genetic interactions with the SPB component sad1p and is required for sad1p localization. Finally, cdc31 mutant can undergo single or multiple rounds of septation before the exit from mitosis, suggesting that cdc31p activity or SPB duplication may be required for the proper coordination between the exit from mitosis and the initiation of septation.  相似文献   

20.
The MPS1 gene from Saccharomyces cerevisiae encodes an essential protein kinase required for spindle pole body (SPB) duplication and for the mitotic spindle assembly checkpoint. Cells with the mps1-1 mutation fail early in SPB duplication and proceed through monopolar mitosis with lethal consequences. We identified CDC37 as a multicopy suppressor of mps1-1 temperature-sensitive growth. Suppression is allele specific, and synthetic lethal interactions occur between mps1 and cdc37 alleles. We examined the cdc37-1 phenotype for defects related to the SPB cycle. The cdc37-1 temperature-sensitive allele causes unbudded, G1 arrest at Start (Reed, S.I. 1980. Genetics. 95: 561–577). Reciprocal shifts demonstrate that cdc37-1 arrest is interdependent with α-factor arrest but is not a normal Start arrest. Although the cells are responsive to α-factor at the arrest, SPB duplication is uncoupled from other aspects of G1 progression and proceeds past the satellite-bearing SPB stage normally seen at Start. Electron microscopy reveals side-by-side SPBs at cdc37-1 arrest. The outer plaque of one SPB is missing or reduced, while the other is normal. Using the mps2-1 mutation to distinguish between the SPBs, we find that the outer plaque defect is specific to the new SPB. This phenotype may arise in part from reduced Mps1p function: although Mps1p protein levels are unaffected by the cdc37-1 mutation, kinase activity is markedly reduced. These data demonstrate a requirement for CDC37 in SPB duplication and suggest a role for this gene in G1 control. CDC37 may provide a chaperone function that promotes the activity of protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号