首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 790 毫秒
1.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

2.
West FW  Seo HS  Bradrick TD  Howell EE 《Biochemistry》2000,39(13):3678-3689
R67 dihydrofolate reductase (DHFR) is an R-plasmid-encoded enzyme that confers clinical resistance to the antibacterial drug trimethoprim. This enzyme shows no sequence or structural homology to the chromosomal DHFRs. The active form of the protein is a homotetramer possessing D(2) symmetry and a single active-site pore. Two tryptophans occur per monomer: W38 and its symmetry-related residues (W138, W238, and W338) occur at the dimer-dimer interfaces, while W45 and its symmetry-related partners (W145, W245, and W345) occur at the monomer-monomer interfaces. Two single-tryptophan mutant genes were constructed to determine the structural and functional consequences of four mutations per tetramer. The W45F mutant retains full enzyme activity and the fluorescence environment of the unmutated W38 residues clearly monitors ligand binding and a pH dependent tetramer right harpoon over left harpoon 2 dimers equilibrium. In contrast, four simultaneous W38F mutations at the dimer-dimer interfaces result in tetramer destabilization. The ensuing dimer is relatively inactive, as is dimeric wild-type R67 DHFR. A comparison of emission spectra indicates the fluorescent signal of wild-type R67 DHFR is dominated by the contribution from W38. Equilibrium unfolding/folding curves at pH 5.0, where all protein variants are dimeric, indicate the environment monitored by the W38 residue is slightly less stable than the environment monitored by the W45 residue.  相似文献   

3.
CD38 is a transmembrane glycoprotein expressed in multiple cell types, including pancreatic β cells. It can serve as an enzyme that catalyzes the metabolism of two different Ca(2+)-mobilizing compounds, cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate. One of these metabolites, cADPR, is known to be involved in glucose-induced insulin secretion from pancreatic β cells. Although the essential role of CD38 for endogenous cADPR synthesis has been established, the relationship between the proposed extracellular enzymatic activity of CD38 and the intracellular Ca(2+) modulation caused by the intracellular cADPR accumulation has not yet been fully explained. For a better understanding of the role of CD38 in the insulin secretion machinery, analysis of the intracellular localization of this molecule in pancreatic β cells is essential. In an attempt to provide a method to probe the N-terminal and C-terminal of CD38 separately, we generated an insulin-secreting MIN6 murine pancreatic β cell line expressing a human CD38 bearing an N-terminal FLAG epitope tag. We found a weak but consistent expression of the FLAG epitope outside of the cells, indicating the presence of a small amount of CD38 with cytoplasmic enzymatic activity. MIN6 cells transfected with human CD38 exhibited increased glucose-induced insulin release. In addition, anti-FLAG cross-linking further enhanced the insulin release, suggesting that the N-terminal of CD38 expressed on the cell surface functions as a receptor for an unknown ligand and triggers positive signals for insulin secretion.  相似文献   

4.
Leukocyte cell surface antigen CD38 is a single-transmembrane protein whose extracellular domain has catalytic activity for NAD(+) glycohydrolase (NADase). We previously reported that b-series gangliosides inhibit the NADase activity of the extracellular domain of CD38 expressed as a fusion protein [Hara-Yokoyama, M., Kukimoto, I., Nishina, H., Kontani, K., Hirabayashi, Y., Irie, F., Sugiya, H., Furuyama, S., and Katada, T. (1996) J. Biol. Chem. 271, 12951-12955]. In the present study, we examined the effect of exogenous gangliosides on the NADase activity of CD38 on the surface of retinoic acid-treated human leukemic HL60 cells and CD38-transfected THP-1 cells. After incubation of the cells with G(T1b), inhibition of NADase activity was observed. The time course of inhibition was slower than that of the incorporation of G(T1b) into the cells, suggesting that incorporation into the cell membranes is a prerequisite for inhibition. Inhibition occurred efficiently when G(T1b) and CD38 were present on the same cells (cis interaction) rather than on different cells (trans interaction). Although gangliosides may affect localization of cell surface proteins, indirect immunofluorescence intensity due to CD38 was not affected after G(T1b) treatment. Comparison of the effect of G(T1b) and G(D1a) indicates that the tandem sialic acid residues linked to the internal galactose residue of the gangliotetraose core are crucial to the inhibition. These results suggest a novel role of complex gangliosides for the first time as cell surface inhibitors of CD38 through specific and cis interaction between the oligosaccharide moiety and the extracellular domain.  相似文献   

5.
Physically distinct cholesterol/sphingolipid-rich plasma membrane microdomains, so-called lipid rafts, have been recognized to play an important regulatory role in various cellular processes, from membrane trafficking to signal transduction, in a number of cell types. We report here that the ability of TCR on activated, functional CD8+ T lymphocytes to efficiently bind MHC class I tetramer complexes is dependent on the integrity of lipid rafts on the T lymphocyte membrane. We further provide evidence that TCR interact (associate) with lipid raft elements on the T cell surface before receptor engagement and that the topological arrangement of TCR on the cell surface is likewise influenced by lipid raft integrity.  相似文献   

6.
7.
Szilvay GR  Kisko K  Serimaa R  Linder MB 《FEBS letters》2007,581(14):2721-2726
Hydrophobins are small fungal surface active proteins that self-assemble at interfaces into films with nanoscale structures. The hydrophobin HFBI from Trichoderma reesei has been shown to associate in solution into tetramers but the role of this association on the function of HFBI has remained unclear. We produced two HFBI variants that showed a significant shift in solution association equilibrium towards the tetramer state. However, this enhanced solution association did not alter the surface properties of the variant HFBIs. The results show that there is not a strong relationship between HFBI solution association state and surface properties such as surface activity.  相似文献   

8.
9.
ADP-ribosyltransferase-2 (ART2), a GPI-anchored, toxin-related ADP-ribosylating ectoenzyme, is prominently expressed by murine T cells but not by B cells. Upon exposure of T cells to NAD, the substrate for ADP-ribosylation, ART2 catalyzes ADP-ribosylation of the P2X7 purinoceptor and other functionally important cell surface proteins. This in turn activates P2X7 and induces exposure of phosphatidylserine and shedding of CD62L. CD38, a potent ecto-NAD-glycohydrolase, is strongly expressed by most B cells but only weakly by T cells. Following incubation with NAD, CD38-deficient splenocytes exhibited lower NAD-glycohydrolase activity and stronger ADP-ribosylation of cell surface proteins than their wild-type counterparts. Depletion of CD38(high) cells from wild-type splenocytes resulted in stronger ADP-ribosylation on the remaining cells. Similarly, treatment of total splenocytes with the CD38 inhibitor nicotinamide 2'-deoxy-2'-fluoroarabinoside adenine dinucleotide increased the level of cell surface ADP-ribosylation. Furthermore, the majority of T cells isolated from CD38-deficient mice "spontaneously" exposed phosphatidylserine and lacked CD62L, most likely reflecting previous encounter with ecto-NAD. Our findings support the notion that ecto-NAD functions as a signaling molecule following its release from cells by lytic or nonlytic mechanisms. ART2 can sense and translate the local concentration of ecto-NAD into corresponding levels of ADP-ribosylated cell surface proteins, whereas CD38 controls the level of cell surface protein ADP-ribosylation by limiting the substrate availability for ART2.  相似文献   

10.
Soluble MHC/peptide tetramers that can directly bind the TCR allow the direct visualization and quantitation of Ag-specific T cells in vitro and in vivo. We used HY-D(b) tetramers to assess the numbers of HY-reactive CD8+ T cells in HYTCR-transgenic mice and in naive, wild-type C57BL/6 (B6) mice. As expected, tetramer staining showed the majority of T cells were male-specific CD8+ T cells in female HY-TCR mice. Staining of B6 mice showed a small population of male-specific CD8+ T cells in female mice. The effect of administration of soluble MHC class I tetramers on CD8+ T cell activation in vivo was unknown. Injection of HY-D(b) tetramer in vivo effectively primed female mice for a more rapid proliferative response to both HY peptide and male splenocytes. Furthermore, wild-type B6 female mice injected with a single dose of HY-D(b) tetramer rejected B6 male skin grafts more rapidly than female littermates treated with irrelevant tetramer. In contrast, multiple doses of HY-D(b) tetramer did not further decrease graft survival. Rather, female B6 mice injected with multiple doses of HY-D(b) tetramer rejected male skin grafts more slowly than mice primed with a single injection of tetramer or irradiated male spleen cells, suggesting clonal exhaustion or anergy. Our data highlight the ability of soluble MHC tetramers to identify scarce alloreactive T cell populations and the use of such tetramers to directly modulate an Ag-specific T cell response in vivo.  相似文献   

11.
12.
In the present report, we demonstrated that modulation of CD26 from T cell surface induced by antiCD26 (1F7) led to enhanced phosphorylation of CD3 zeta tyrosine residues and increased CD4 associated p56lck tyrosine kinase activity. We further showed that CD26 was comodulated on the T cell surface with CD45, a known membrane-linked protein tyrosine phosphatase and that anti-CD26 was capable of precipitating CD45 from T cell lysates. These findings strongly suggest that CD26 may be closely associated with the CD45 protein tyrosine phosphatase on T cell surface and further support the notion that the interaction of CD26 with CD45 results in enhanced tyrosine kinase activity, zeta chain phosphorylation, and T cell activation.  相似文献   

13.
The production of synthetic MHC-peptide tetramers has revolutionized cellular immunology by revealing enormous CD8(+) T cell expansions specific for peptides from various pathogens. A feature of these reagents, essential for their staining function, is that they bind T cells with relatively high avidity. This could, theoretically, promote cross-reactivity with irrelevant T cells leading to overestimates of epitope-specific T cell numbers. Therefore, we have investigated the fine specificity of CTL staining with these reagents for comparison with functional data. Using a panel of CTL clones with distinct fine specificity patterns for analogs of an HLA-B8-binding EBV epitope, together with B8 tetramers incorporating these peptides, we show a very good correlation between tetramer staining and peptide activity in cytotoxicity assays. Significant staining only occurred with tetramers that incorporate strong stimulatory agonist peptides and not weak agonists that are unlikely to induce full T cell activation at physiological levels of presentation. In almost every case where a peptide analog had >10-fold less activity than the optimal EBV peptide in cytotoxicity assays, the corresponding tetramer stained with >10-fold less intensity than the EBV epitope tetramer. Furthermore, by examining an EBV-specific clonotypic T cell expansion in EBV-exposed individuals, we show similar fine specificity in tetramer staining of fresh peripheral T cells. Collectively, our data demonstrate the exquisite specificity of class I MHC-peptide tetramers, underlining their accuracy in quantifying only those T cells capable of recognizing the low levels of cell surface peptide presented after endogenous Ag processing.  相似文献   

14.
DnaD is a primosomal protein that remodels supercoiled plasmids. It binds to supercoiled forms and converts them to open forms without nicking. During this remodeling process, all the writhe is converted to twist and the plasmids are held around the periphery of large scaffolds made up of DnaD molecules. This DNA-remodeling function is the sum of a scaffold-forming activity on the N-terminal domain and a DNA-dependent oligomerization activity on the C-terminal domain. We have determined the crystal structure of the scaffold-forming N-terminal domain, which reveals a winged-helix architecture, with additional structural elements extending from both N- and C-termini. Four monomers form dimers that join into a tetramer. The N-terminal extension mediates dimerization and tetramerization, with extensive interactions and distinct interfaces. The wings and helices of the winged-helix domains remain exposed on the surface of the tetramer. Structure-guided mutagenesis and atomic force microscopy imaging indicate that these elements, together with the C-terminal extension, are involved in scaffold formation. Based upon our data, we propose a model for the DnaD-mediated scaffold formation.  相似文献   

15.
We eventually isolated two different clonotypic CD8 T cell subsets recognizing an HIV Pol-derived epitope peptide (IPLTEEAEL) in association with HLA-B35 from a chronic HIV-infected patient. By kinetic analysis experiments, the subsets showed a >3-fold difference in half-lives for the HLA tetramer in complex with the Pol peptide. In functional assays in vitro and ex vivo, both subsets showed substantial functional avidity toward peptide-loaded cells. However, the high affinity subset did not show cytolytic activity, cytokine production, or proliferation activity toward HIV-infected cells, whereas the moderate affinity one showed potent activities. Furthermore, using ectopic expression of each of the TCR genes into primary human CD8 T cells, the CD8 T cells transduced with the high affinity TCR showed greater binding activity toward the tetramer and impaired cytotoxic activity toward HIV-infected cells, corroborating the results obtained with parental CD8 T cells. Taken together, these data indicate that impaired responsiveness of T cells toward HIV-infected cells can occur at the level of TCR-ligand interactions, providing us further insight into the immune evasion mechanisms by HIV.  相似文献   

16.
The CD38 molecule is well represented on cell surfaces in many cases of a variety of lymphoid tumors, notably multiple myeloma, AIDS-associated lymphomas, and post-transplant lymphoproliferations. As such, this molecule is a promising target for antibody therapy. After early disappointments, improved anti-CD38 antibodies of strong cytolytic potential have been described by 3 groups. First, a human IgG monoclonal anti-CD38 antibody raised in mice transgenic for human Ig has been found to induce potent complement and cellular cytotoxicities against both myeloma cell lines and fresh harvests from myeloma marrow and leukemic blood. This antibody also exhibits the singular property of inhibiting the CD38 cyclase activity. Second, a series of CD38-specific human antibodies, with high affinities and high ADCC activities against cell lines and primary cultures of myeloma, has been selected from a unique phage-display library. Finally, to enhance specificity for myeloma cells, bispecific domain antibodies targeting both CD38 and CD138 have been developed. As they lack any Fc module, these constructs rely on cytotoxicity for delivering a toxin to tumor cells. The list of candidate CD38-bearing neoplasms as targets for these antibody constructs can now be expanded to include acute promyelocytic leukemia, and possibly other myeloid leukemias, in which surface CD38 can be induced by retinoid treatment. One caveat here is that evidence has been produced to suggest that CD38 promotes pulmonary manifestations of the hazardous retinoic acid syndrome.  相似文献   

17.
CD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity. Anti-CD8 Abs have been used extensively to examine the role of CD8 in CD8(+) T cell activation. However, as previous studies have yielded conflicting results, it is unclear from the literature whether anti-CD8 Abs per se are capable of inducing effector function. In this article, we report on the ability of seven monoclonal anti-human CD8 Abs to activate six human CD8(+) T cell clones with a total of five different specificities. Six of seven anti-human CD8 Abs tested did not activate CD8(+) T cells. In contrast, one anti-human CD8 Ab, OKT8, induced effector function in all CD8(+) T cells examined. Moreover, OKT8 was found to enhance TCR/pMHCI on-rates and, as a consequence, could be used to improve pMHCI tetramer staining and the visualization of Ag-specific CD8(+) T cells. The anti-mouse CD8 Abs, CT-CD8a and CT-CD8b, also activated CD8(+) T cells despite opposing effects on pMHCI tetramer staining. The observed heterogeneity in the ability of anti-CD8 Abs to trigger T cell effector function provides an explanation for the apparent incongruity observed in previous studies and should be taken into consideration when interpreting results generated with these reagents. Furthermore, the ability of Ab-mediated CD8 engagement to deliver an activation signal underscores the importance of CD8 in CD8(+) T cell signaling.  相似文献   

18.
The CD38 cell surface receptor is a potent activator for splenic, B lymphocytes. The molecular mechanisms regulating this response, however, remain incompletely characterized. Activation of the nonreceptor tyrosine kinase, Btk, is essential for CD38 downstream signaling function. The major Btk-dependent substrate in B cells, phospholipase C-gamma2 (PLC-gamma2), functions to generate the key secondary messengers, inositol-1,4,5 trisphosphate and diacylglycerol. Surprisingly, CD38 ligation results in no detectable increase in phosphoinositide metabolism and only a minimal increase in cytosolic calcium. We hypothesized that Btk functioned independently of PLC-gamma2 in the CD38 signaling pathway. Accordingly, we demonstrate that CD38 cross-linking does not result in the functional phosphorylation of PLC-gamma2 nor an increase in inositol-1,4,5 trisphosphate production. Furthermore, splenic B cells exhibit a normal CD38-mediated, proliferative response in the presence of the phosphoinositide-PLC inhibitor, U73122. Conversely, protein kinase C (PKC) beta-deficient mice, or PKC inhibitors, indicated the requirement for diacylglycerol-dependent PKC isoforms in this pathway. Loss of PKC activity blocked CD38-dependent, B cell proliferation, NF-kappaB activation, and subsequent expression of cyclin-D2. These results suggested that an alternate diacylglycerol-producing phospholipase must participate in CD38 signaling. Consistent with this idea, CD38 increased the enzymatic activity of the phosphatidylcholine (PC)-metabolizing enzymes, PC-PLC and phospholipase D. The PC-PLC inhibitor, D609, completely blocked CD38-dependent B cell proliferation, IkappaB-alpha degradation, and cyclin-D2 expression. Analysis of Btk mutant B cells demonstrated a partial requirement for Btk in the activation of both enzymes. Taken together, these data demonstrate that CD38 initiates a novel signaling cascade leading to Btk-, PC-PLC-, and phospholipase D-dependent, PLC-gamma2-independent, B lymphocyte activation.  相似文献   

19.
CD38 is a multifunctional cell surface ectoenzyme that catalyzes both the synthesis of cyclic ADP-ribose from NAD+ and its hydrolysis to ADP-ribose. In this work, we investigated the metabolism of NADP+ by CD38 expressed on human platelets. Incubation of either platelet membranes or intact cells with NADP+ resulted in the rapid and time-dependent accumulation of ADP-ribose 2'-phosphate that paralleled the consumption of the substrate. However, under the same conditions, synthesis of cyclic ADP-ribose 2'-phosphate was not observed. By immunoprecipitation experiments, we identified CD38 as the enzyme responsible for the observed NADP+ glycohydrolase activity. The lack of detection of cyclic ADP-ribose 2'-phosphate was not due to its rapid hydrolysis, since direct incubation of platelet membranes with cyclic ADP-ribose 2'-phosphate did not result in the formation of ADP-ribose 2'-phosphate. By contrast, the same membrane samples expressed a significant ability to hydrolyze cyclic ADP-ribose to ADP-ribose. The absence of cyclic ADP-ribose 2'-phosphate hydrolase activity was also confirmed using high concentrations of substrate and by analysing both intact Jurkat T-lymphocytes and immunoprecipitated CD38. These results indicate that CD38, which is a multifunctional enzyme towards NAD+, displays exclusively a NADP+ glycohydrolase activity and is unable to catalyze both the synthesis and the hydrolysis of cyclic ADP-ribose 2'-phosphate.  相似文献   

20.
Spectrin dimer-tetramer interconversion is a critical contributor to red cell membrane stability, but some properties of spectrin tetramer formation cannot be studied effectively using monomeric recombinant domains. To address these limitations, a fused αβ mini-spectrin was produced that forms wild-type divalent tetramer complexes. Using this mini-spectrin, a medium-resolution structure of a seven-repeat bivalent tetramer was produced using homology modeling coupled with chemical cross-linking. Inter- and intramolecular cross-links provided critical distance constraints for evaluating and optimizing the best conformational model and appropriate docking interfaces. The two strands twist around each other to form a super-coiled, rope-like structure with the AB helix face of one strand associating with the opposing AC helix face. Interestingly, two tetramer site hereditary anemia mutations that exhibit wild-type binding in univalent head-to-head assays are located in the interstrand region. This suggests that perturbations of the interstrand region can destabilize spectrin tetramers and the membrane skeleton. The α subunit N-terminal cross-links to multiple sites on both strands, demonstrating that this non-homologous tail remains flexible and forms heterogeneous structures in the tetramer complex. Although no cross-links were observed involving the β subunit non-homologous C-terminal tail, several cross-links were observed only when this domain was present, suggesting it induces subtle conformational changes to the tetramer site region. This medium-resolution model provides a basis for further studies of the bivalent spectrin tetramer site, including analysis of functional consequences of interstrand interactions and mutations located at substantial molecular distances from the tetramer site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号