首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The D20S6 locus has been sublocalized by in situ hybridization using the pD3H12 probe to human chromosome band 20p12 and the D20S4 locus using the pMS1-27 probe to 20q13.2. A rare new restriction fragment length polymorphism detected in MspI-digested DNA by the pMSI-27 probe is reported. Linkage studies in nine families have shown that the D20S6 locus is linked to D20S5 (formerly mapped to 20p12 by in situ hybridization) with a maximum likelihood estimate of 0.07 for the recombination frequency (lod score = 9.07) and a confidence interval of 0.02 to 0.14. Estimated recombination frequencies were similar in males and females. Using both two- and multipoint analyses, linkage of D20S4 with the D20S5 and D20S6 loci was excluded and the suggested order for the three loci on chromosome 20 is D20S5-D20S6-centromere-D20S4. D20S5 and D20S6 are very useful markers for linkage studies because of their close proximity and reasonably good polymorphic information content values.  相似文献   

2.
Summary Two probes from the random human cosmid c1-37 detect restriction fragment length polymorphisms in humans. The loci revealed by these probes are in linkage equilibrium and constitute a compound polymorphic locus with a polymorphism information content of 0.54. A somatic cell hybrid panel has been used to map the probes to chromosome 20; in situ hybridization studies confirm this localization and indicate that the locus is on 20q13. This is the first polymorphic locus to be assigned to the long arm of chromosome 20.  相似文献   

3.
The human methylmalonyl CoA mutase (MCM) cDNA has been used to localize the MUT locus on the short arm of chromosome 6 proximal to the glyoxalase locus in 6p deletion cell lines. A HindIII polymorphism identified by the MCM cDNA was used to study linkage relationships of MUT to HLA (A-B-DQ-DR) and D6S4 in the reference CEPH families. The maximum lod score for MUT versus HLA was 3.04 at a recombination fraction of 0.28. The maximum lod score for MUT versus D6S4 was 22.93 at a recombination fraction of 0.01. These data suggest that MUT and D6S4 loci are tightly linked and may be used as one locus in a haplotype form for linkage studies on proximal 6p and diagnostic analysis of pedigrees with mut methylmalonic acidemia.  相似文献   

4.
Linkage analysis of the human dopamine beta-hydroxylase gene   总被引:2,自引:0,他引:2  
The human gene for dopamine beta-hydroxylase (D beta H) has been mapped to chromosome 9q34. Using polymerase chain reaction amplification of exon 11 of the D beta H gene followed by digestion of the reaction products with FnuDII (BstUI), we detected a low-frequency restriction fragment length polymorphism (RFLP). The CEPH panel of family DNAs was genotyped for this RFLP, enabling us to determine the linkage relationships between D beta H and four other loci previously mapped to human chromosome 9q. We obtained two-point recombination frequencies (theta) between D beta H and arginosuccinate synthetase (theta = 0, LOD = 7.37), the ABO blood group locus (theta = 0, LOD = 4.5), CRI-P111 (theta = 0, LOD = 2.1), and D9S31 (theta = .06, LOD = 2.81).  相似文献   

5.
Barley (Hordeum vulgare L.) telomeres were investigated by means of pulsed field gel electrophoresis (PFGE) and in situ hybridization. In situ hybridization showed that a tandemly repeated satellite sequence has a subtelomeric location, and is present at thirteen of the fourteen chromosome ends. PFGE revealed that this satellite sequence is physically close to the telomeric repeat. Pulsed field gel electrophoresis was then used for segregation analysis and linkage mapping of several telomeric and satellite loci in a segregating doubled-haploid population. The telomeric repeat displayed a hypervariable segregation pattern with new alleles occurring in the progeny. Eight satellite and telomeric sites were mapped on an restriction fragment length polymorphism (RFLP)-map of barley, defining the ends of chromosome arms 1L, 2S, 3L, 4S, 4L, 5S and 6. One satellite locus mapped to an interstitial site on the long arm of chromosome 3. The pyhsical location of this locus was confirmed by in situ hybridization to wheat/barley addition line 3.  相似文献   

6.
Summary Alzheimer disease (AD) is a devastating neurodegenerative disease leading to global dementia. The familial form (FAD) has been linked to markers on chromosome 21 in some families, most tightly to the loci D21S16 and D21S13 located close to the centromere of the long arm. In other families the FAD mutation has been excluded from the more telomeric D21S1/S11 region, but not from the centromeric region of chromosome 21. We identified two new restriction fragment length polymorphisms (RFLPs) for the locus D21S13 and have used these RFLPs for the analysis of one of the largest known early-onset FAD pedigrees. We calculated pairwise and multipoint lod scores for the loci D21S13, D21S110, and D21S11. Linkage to this region of chromosome 21 was excluded with maximum negative lod scores of -6.4 at D21S13 and D21S110. Thus, it is unlikely that the FAD mutation in this family is located in the region that has shown linkage in other FAD pedigrees. This result provides evidence for genetic heterogeneity of early-onset FAD or a location of FAD centromeric to D21S13.  相似文献   

7.
The product of the mouse Rec-1 locus is an integral membrane protein that determines susceptibility to infection by murine ecotropic retroviruses. Recently it has been determined that its role in normal cell metabolism is transport of the cationic amino acids, arginine, lysine, and ornithine across the plasma membrane. Southern blot analysis of genomic DNA from a panel of 48 mouse-human somatic cell hybrids assigned the human version of this gene, ATRC1, to chromosome 13. Chromosomal in situ hybridization localized the gene to 13q12-q14. A restriction fragment length polymorphism (RFLP) was detected with TaqI. There were two alleles with frequencies of 0.29 and 0.71. Pairwise linkage analysis established linkage between ATRC1 and ATP1AL1, D13S1, D13S6, D13S10, D13S11, D13S21, D13S22, D13S33, D13S36, and D13S37. Multilocus linkage analysis of five of the loci indicated that the most likely order of loci in this region was D13S11-ATP1AL1-ATRC1-D13S6-D13S33.  相似文献   

8.
An anonymous DNA fragment (G8) detects two restriction fragment length polymorphic alleles (RFLPs) called D4S10 in HindIII-digested human genomic DNA. This segment had been assigned to chromosome 4 and shows close linkage to the Huntington's disease gene. With in situ hybridization, we mapped D4S10 to the terminal region of the short arm of chromosome 4, localizing the Huntington's disease gene to bands 4p16----p15. This information may prove useful for the development of strategies to clone the Huntington's disease gene.  相似文献   

9.
Microsatellite repeat loci can provide informative markers for genetic linkage. Currently, the human chromosome 2 genetic linkage map has very few highly polymorphic markers. Being such a large chromosome, it will require a large number of informative markers for the dense coverage desired to allow disease genes to be mapped quickly and accurately. Dinucleotide repeat loci from two anonymous chromosome 2 genomic DNA clones were sequenced so that oligonucleotide primers could be designed for amplifying each locus using the polymerase chain reaction (PCR). Five sets of PCR primers were also generated from nucleotide sequences in the GenBank Database of chromosome 2 genes containing dinucleotide repeats. In addition, one PCR primer pair was made that amplifies a restriction fragment length polymorphism on the TNP1 gene (Hoth and Engel, 1991). These markers were placed on the CEPH genetic linkage map by screening the CEPH reference DNA panel with each primer set, combining these data with those of other markers previously placed on the map, and analyzing the combined data set using CRI-MAP and LINKAGE. The microsatellite loci are highly informative markers and the TNP1 locus, as expected, is only moderately informative. A map was constructed with 38 ordered loci (odds 1000:1) spanning 296 cM (male) and 476 cM (female) of chromosome 2 compared with 306 cM (male) and 529 cM (female) for a previous map of 20 markers.  相似文献   

10.
Autosomal recessive retinitis pigmentosa (arRP) is a genetically and clinically heterogeneous and progressive degenerative disorder of the retina, leading usually to severe visual handicap in adulthood. To date, disease loci/genes have been mapped/identified only in a minority of cases. DNA samples were collected from 20 large consanguineous Indian families, in which arRP segregated and that were suitable for homozygosity mapping of the disease locus. After excluding linkage to all known arRP loci, a genome-wide scan was initiated. In two families, homozygosity mapping, haplotype analysis, and linkage data mapped the disease locus (RP22) in an approximately 16-cM region between D16S287 and D16S420 on the proximal short arm of chromosome 16. No mutation has been found by direct sequencing in the gene (CRYM) encoding μ crystallin, which maps in the critical region.  相似文献   

11.
In order to develop linkage markers for the murine argininosuccinate synthetase locus (Ass-1), we have searched for restriction fragment length polymorphisms in the mouse genome using cloned sequences from the mouse arginosuccinate synthetase structural gene. Five restriction fragment length polymorphisms were found among the recombinant inbred progenitor strains AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, C57L/J, DBA/2J, and SWR/J. Of these, four polymorphisms were found to distinguish the SWR/J strain from the other six strains, which all had the same fragment. The fifth polymorphism revealed differences among the progenitor strains for recombinant inbred strain sets AKXL, BXD, and SWXL. The strain distribution pattern for this polymorphism indicated close linkage of Ass-1 to Hc (the fifth component of complement) on proximal mouse chromosome 2 with a recombination fraction of 0.016 and a 95% confidence interval of 0.003 to 0.054. These data place Ass-1 in a syntenic group with the genes Hc, Abl, Fpgs, and Ak-1 whose linkage has been conserved between human chromosome 9q and mouse chromosome 2.  相似文献   

12.
The chromosomal location of an 8.2-kb genomic fragment encompassing a cluster of four human tRNA genes has been determined by three complementary methods including Southern analysis of human/rodent somatic cell hybrids, in situ hybridization, and genetic linkage analysis. This tRNA cluster (TRP1, TRP2, and TRL1) is located near the T-cell receptor alpha (TCRA) locus at 14q11, and several RFLPs were detected at this site. These RFLPs and those at the TCRA and MYH7 (cardiac beta-MHC gene) loci have been used to type all informative members of the CEPH pedigrees. This has permitted ordering of these three gene loci and two anonymous probes (D14S26 and D14S25) in a 20-cM interval just below the centromere of chromosome 14. Based upon the chromosomal location and the polymorphisms at this site, one or more members of this gene cluster could serve as a useful anchor locus on chromosome 14.  相似文献   

13.
Protein kinase C: a new linkage marker for growth hormone and for COL1A1   总被引:1,自引:0,他引:1  
An expanded linkage group on the long arm of human chromosome 17 is reported. Using the CEPH panel of DNAs and restriction fragment length polymorphism (RFLP) markers for the centromere locus (D17Z1), growth hormone (GH1), collagen type I alpha 1 (COL1A1), and protein kinase C-alpha polypeptide (PKCA) loci, theta values of 0.03, 0.11, and 0.23 were found between PKCA and GH1, PKCA and COL1A1, and PKCA and D17Z1, respectively. The theta values calculated for GH1 versus COL1A1 or D17Z1 were 0.11 and 0.23, respectively. Sex-specific recombination rates were calculated for the best likelihood order and demonstrate female recombination greater than male recombination. Therefore, the loci studied span a map region of approximately 30 cm between 17cen and 17q24, with the most likely gene order being D17Z1-COL1A1-PKCA-GH1.  相似文献   

14.
Multiple highly polymorphic markers have been used to construct a genetic map of the q12-q13.1 region of chromosome 20 and to map the location of the maturity-onset diabetes of the young (MODY) locus. The genetic map encompasses 23 cM and includes 11 loci with PIC values >.50, seven of which have PICs >.70. New dinucleotide repeat polymorphisms associated with the D20S17, PPGB, and ADA loci have been identified and mapped. The dinucleotide repeat polymorphisms have increased the PIC of the ADA locus to .89 and, with an additional RFLP at the D20S17 locus, the PIC of the D20S17 locus to .88. The order of the D20S17 and ADA loci determined genetically (cen–ADA–D20S17–qter) was confirmed by multicolor fluorescence in situ hybridization. The previously unmapped PPGB marker is closely linked to D20S17, with a two-point lod score of 50.53 at [unk] = .005. These markers and dinucleotide repeat markers associated with the D20S43, D20S46, D20S55, D20S75, and PLC1 loci and RFLPs at the D20S16, D20S17, D20S22, and D20S33 have been used to map the MODY locus on chromosome 20 to a 13-cM (sex averaged) interval encompassing ADA, D20S17, PPGB, D20S16, and D20S75 on the long arm of chromosome 20 and to create a genetic framework for additional genetic and physical mapping studies of the region. With these multiple highly polymorphic loci, any MODY family of appropriate size can be tested for the chromosome 20 linkage.  相似文献   

15.
Chamberlain et al. have assigned the gene for Friedreich ataxia (FA), a recessive neurodegenerative disorder, to chromosome 9, and have proposed a regional localization in the proximal short arm (9p22-cen), on the basis of linkage to D9S15 and to interferon-beta (IFNB), the latter being localized in 9p22. We confirmed more recently the close linkage to D9S15 in another set of families but found much looser linkage to IFNB. We also reported another closely linked marker, D9S5. Additional families have now been studied, and our updated lod scores are z = 14.30 at theta = .00 for D9S15-FA linkage and z = 6.30 at theta = .00 for D9S5-FA linkage. Together with the recent data of Chamberlain et al., this shows that D9S15 is very likely within 1 cM of the FA locus. We have found very significant linkage disequilibrium (delta Std = .28, chi 2 = 9.71, P less than .01) between FA and the D9S15 MspI RFLP in French families, which further supports the very close proximity of these two loci. No recombination between D9S5 and D9S15 was found in the FA families or Centre d'Etude du Polymorphisme Humain families (z = 9.30 at theta = .00). Thus D9S5, D9S15, and FA define a cluster of tightly linked loci. We have mapped D9S5 by in situ hybridization to 9q13-q21, and, accordingly, we assign the D9S5, D9S15, and FA cluster to the proximal part of chromosome 9 long arm, close to the heterochromatic region.  相似文献   

16.
D J Norman  C Fletcher  N Heintz 《Genomics》1991,9(1):147-153
The lurcher (Lc) mutant mouse strain exhibits postnatal degeneration of cerebellar Purkinje cells. We have typed progeny from an intersubspecific, phenotypic backcross at seven loci to develop a genetic linkage map which spans approximately 35 cM surrounding and including the Lc locus on mouse chromosome 6. [(Mus musculus castaneus x B6CBA-Aw-J/A-Lc)F1 x B6CBA-Aw-J/A]N2 progeny were scored visually for the lurcher phenotype and molecularly, through restriction fragment length polymorphism analysis, for six cloned markers. Two candidate genes, Npy and Pcp-1, which map to mouse chromosome 6 and which are expressed in the cerebellum, are demonstrated to be distinct from Lc. Three genes are shown to be closely linked to the Lc locus, and the map order cen-Cpa-Npy-Cbl-1-Lc-Igk, Fabpl-Pcp-1 is determined. The molecular genetic linkage map presented here represents progress toward isolating a clone of the Lc gene.  相似文献   

17.
The autosomal dominant spinocerebellar ataxias (SCAs) are a clinically heterogeneous group of neurodegenerative diseases. To date, two SCA loci have been identified-one locus (SCA-1) on the short arm of chromosome 6 and the second locus (SCA-2) on the long arm of chromosome 12. We have studied two large kindreds from different ethnic backgrounds, segregating an autosomal dominant form of SCA. A total of 207 living individuals, including 50 affected, were examined, and blood was collected. We performed linkage analysis using anonymous DNA markers which flank the two previously described loci. Our results demonstrate that the two kindreds, one Austrian-Canadian and one French-Canadian, are linked to SCA-2 (chromosome 12q). Multipoint linkage analysis places the SCA-2 locus within a region of approximately 16 cM between the microsatellites D12S58 and D12S84/D12S105 (odds ratio 2,371:1 in favor of this position). We show that the SCA-2 locus is not a private gene and represents an alternative SCA locus.  相似文献   

18.
The tumors of patients with small cell lung carcinoma (SCLC) frequently exhibit the loss of alleles at polymorphic loci on the short arm of chromosome 3. We report the genotype analysis of six SCLC patients obtained using 15 chromosome 3 probes that identified 19 restriction fragment length polymorphisms (RFLPs). Five of the six patients were reduced to homozygosity in the tumor DNA at every informative 3p locus, and thus did not serve to delineate the deletion. However, the RFLP analysis of the tumor DNA of the sixth patient demonstrated both heterozygous and hemizygous loci on 3p and allowed the definition of an interstitial deletion that extends proximal to the D3S2 locus at 3p14.2-p21 to include at least 3p13-p14. The exclusion of the D3F15S2 locus from the deleted region, observed in this patient, is an uncharacteristic feature of SCLC deletions. This deletion includes the location of D3S30 and D3S4, and thus serves to map these loci within the proximal half of chromosome 3.  相似文献   

19.
Summary In order to determine the regional localization of the Friedreich's ataxia (FA) gene on chromosome 9, the DNA probe DR47 (D9S5), which detects a restriction fragment length polymorphism (RFLP) in tight linkage with the disease, was hybridized in situ to metaphase chromosomes. Our results enable the D9S5 locus to be assigned to the 9q12–q13 region, thus indicating that this is also the localization of the FA gene.  相似文献   

20.
江浙沪和哈尔滨地区汉族D17S30位点的多态性分布   总被引:14,自引:1,他引:13  
D17S30是位于人类染色体17d13.3、以70bp为重复单位的,具有高度多态性的VNTR位点,本文采用作者报道的微量快速Amp-FLP分型技术,对100名哈尔滨市北方汉族人和110名江浙沪南方汉族人作了D17S30位点分型,发现在北方汉族与江浙沪南方汉族之间等位基因频率分布并无显著差异,但可见A1和A7基因频率北高南低,A4基因频率则为南高北代,提示存在南北汉族之间的分化。D17S30位点南北  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号