首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to identify the herpes simplex virus glycoprotein(s) that mediates the adsorption of virions to cells. Because heparan sulfate moieties of cell surface proteoglycans serve as the receptors for herpes simplex virus adsorption, we tested whether any of the viral glycoproteins could bind to heparin-Sepharose in affinity chromatography experiments. Two glycoproteins, gB and gC, bound to heparin-Sepharose and could be eluted with soluble heparin. In order to determine whether virions devoid of gC or gB were impaired for adsorption, we quantitated the binding of wild-type and mutant virions to cells. We found that at equivalent input concentrations of purified virions, significantly fewer gC-negative virions bound to cells than did wild-type or gB-negative virions. In addition, the gC-negative virions that bound to cells showed a significant delay in penetration compared with wild-type virus. The impairments in adsorption and penetration of the gC-negative virions can account for their reduced PFU/particle ratios, which were found to be about 5 to 10% that of wild-type virions, depending on the host cell. Although gC is dispensable for replication of herpes simplex virus in cell culture, it clearly facilitates virion adsorption and enhances infectivity by about a factor of 10.  相似文献   

2.
Rey FA 《EMBO reports》2006,7(10):1000-1005
This review analyses recent structural results that provide clues about a possible molecular mechanism for the transmission of a fusogenic signal among the envelope glycoproteins of the herpes simplex virus on receptor binding by glycoprotein gD. This signal triggers the membrane-fusion machinery of the virus--contained in glycoproteins gB, gH and gL--to induce the merging of viral and cellular membranes, and to allow virus entry into target cells. This activating process parallels that of gamma-retroviruses, in which receptor binding by the amino-terminal domain of the envelope protein activates the fusogenic potential of the virion in a similar way, despite the different organization of the envelope complexes of these two types of viruses. Therefore, the new structural results on the interaction of gD with its receptors might also provide insights into the mechanism of fusogenic signal transmission in gamma-retroviruses. Furthermore, the fusion activation parallels with retroviruses, together with the recently reported structural homology of gB with the rhabdovirus envelope glycoprotein indicate that the complex entry apparatus of herpesviruses appears to be functionally related to that of simpler enveloped viruses.  相似文献   

3.
Monoclonal antibodies specific for gH of herpes simplex virus were shown previously to neutralize viral infectivity. Results presented here demonstrate that these antibodies (at least three of them) block viral penetration without inhibiting adsorption of virus to cells. Penetration of herpes simplex virus is by fusion of the virion envelope with the plasma membrane of a susceptible cell. Electron microscopy of thin sections of cells exposed to virus revealed that neutralized virus bound to the cell surface but did not fuse with the plasma membrane. Quantitation of virus adsorption by measuring the binding of purified radiolabeled virus to cells revealed that the anti-gH antibodies had little or no effect on adsorption. Monitoring cell and viral protein synthesis after exposure of cells to infectious and neutralized virus gave results consistent with the electron microscopic finding that the anti-gH antibodies blocked viral penetration. On the basis of the results presented here and other information published elsewhere, it is suggested that gH is one of three glycoproteins essential for penetration of herpes simplex virus into cells.  相似文献   

4.
Herpes simplex virus: receptors and ligands for cell entry   总被引:5,自引:0,他引:5  
Entry of herpes simplex virus (HSV) into cells depends upon multiple cell surface receptors and multiple proteins on the surface of the virion. The cell surface receptors include heparan sulphate chains on cell surface proteoglycans, a member of the tumor necrosis factor (TNF) receptor family and two members of the immunoglobulin superfamily related to the poliovirus receptor. The HSV ligands for these receptors are the envelope glycoproteins gB and gC for heparan sulphate and gD for the protein receptors and specific sites in heparan sulphate generated by certain 3-O-sulfotransferases. HSV gC also binds to the C3b component of complement and can block complement-mediated neutralization of virus. The purposes of this review are to summarize available information about these cell surface receptors and the viral ligands, gC and gD, and to discuss roles of these viral glycoproteins in immune evasion and cellular responses as well as in viral entry.  相似文献   

5.
We have constructed a recombinant herpes simplex virus type 1 (HSV-1) that simultaneously encodes selected structural proteins from all three virion compartments-capsid, tegument, and envelope-fused with autofluorescent proteins. This triple-fluorescent recombinant, rHSV-RYC, was replication competent, albeit with delayed kinetics, incorporated the fusion proteins into all three virion compartments, and was comparable to wild-type HSV-1 at the ultrastructural level. The VP26 capsid fusion protein (monomeric red fluorescent protein [mRFP]-VP26) was first observed throughout the nucleus and later accumulated in viral replication compartments. In the course of infection, mRFP-VP26 formed small foci in the periphery of the replication compartments that expanded and coalesced over time into much larger foci. The envelope glycoprotein H (gH) fusion protein (enhanced yellow fluorescent protein [EYFP]-gH) was first observed accumulating in a vesicular pattern in the cytoplasm and was then incorporated primarily into the nuclear membrane. The VP16 tegument fusion protein (VP16-enhanced cyan fluorescent protein [ECFP]) was first observed in a diffuse nuclear pattern and then accumulated in viral replication compartments. In addition, it also formed small foci in the periphery of the replication compartments which, however, did not colocalize with the small mRFP-VP26 foci. Later, VP16-ECFP was redistributed out of the nucleus into the cytoplasm, where it accumulated in vesicular foci and in perinuclear clusters reminiscent of the Golgi apparatus. Late in infection, mRFP-VP26, EYFP-gH, and VP16-ECFP were found colocalizing in dots at the plasma membrane, possibly representing mature progeny virus. In summary, this study provides new insights into the dynamics of compartmentalization and interaction among capsid, tegument, and envelope proteins. Similar strategies can also be applied to assess other dynamic events in the virus life cycle, such as entry and trafficking.  相似文献   

6.
HEp-2 cells or Vero cells infected with herpes simplex virus type 1 were exposed to the ionophore monensin, which is thought to block the transit of membrane vesicles from the Golgi apparatus to the cell surface. We found that yields of extracellular virus were reduced to less than 0.5% of control values by 0.2 microM monensin under conditions that permitted accumulation of cell-associated infectious virus at about 20% of control values. Viral protein synthesis was not inhibited by monensin, whereas late stages in the post-translational processing of the viral glycoproteins were blocked. The transport of viral glycoproteins to the cell surface was also blocked by monensin. Although the assembly of nucleocapsids appeared to be somewhat inhibited in monensin-treated cells, electron microscopy revealed that nucleocapsids were enveloped to yield virions, and electrophoretic analyses showed that the isolated virions contained immature forms of the envelope glycoproteins. Most of the virions which were assembled in monensin-treated cells accumulated in large intracytoplasmic vacuoles, whereas most of the virions produced by and associated with untreated cells were found attached to the cell surface. Our results implicate the Golgi apparatus in the egress of herpes simplex virus from infected cells and also suggest that complete processing of the viral envelope glycoproteins is not essential for nucleocapsid envelopment or for virion infectivity.  相似文献   

7.
We examined the entry process of herpes simplex virus type 1 (HSV-1) by using infectious virus and previously characterized noninfectious viruses that can bind to cells but cannot penetrate as a result of inactivation of essential viral glycoprotein D (gD) or H (gH). After contact of infectious virus with the cell plasma membrane, discernible changes of the envelope and tegument could be seen by electron microscopy. Noninfectious virions were arrested at distinct steps in interactions with cells. Viruses inactivated by anti-gD neutralizing antibodies attached to cells but were arrested prior to initiation of a visible fusion bridge between the virus and cell. As judged from its increased sensitivity to elution, virus lacking gD was less stably bound to cells than was virus containing gD. Moreover, soluble gD could substantially reduce virus attachment when added to cells prior to or with the addition of virus. Virus inactivated by anti-gH neutralizing antibodies attached and could form a fusion bridge but did not show expansion of the fusion bridge or extensive rearrangement of the envelope and tegument. We propose a model for infectious entry of HSV-1 by a series of interactions between the virion envelope and the cell plasma membrane that trigger virion disassembly, membrane fusion, and capsid penetration. In this entry process, gD mediates a stable attachment that is likely required for penetration, and gH seems to participate in fusion initiation or expansion.  相似文献   

8.
《Seminars in Virology》1993,4(3):167-180
Studies on four alphaherpesviruses (herpes simplex virus types 1 and 2, pseudorabies virus and bovine herpesvirus 1) have revealed some common features of their entry into cells. The pathway of entry can be by fusion of the virion envelope with the cell plasma membrane. Receptors for binding and entry include heparan sulphate moieties of cell surface proteoglycans and other as yet unidentified cell surface components. Related glycoproteins specified by each of the four viruses mediate the binding of virus to heparan sulphate and subsequent molecular interactions leading to the penetration of virus into the cell.  相似文献   

9.
Fusogenic domains in herpes simplex virus type 1 glycoprotein H   总被引:4,自引:0,他引:4  
Infection of eukaryotic cells by enveloped viruses requires fusion between the viral envelope and the cellular plasma or endosomal membrane. The actual merging of the two membranes is mediated by viral envelope glycoproteins, which generally contain a highly hydrophobic region termed the fusion peptide. The entry of herpesviruses is mediated by three conserved proteins: glycoproteins B, H (gH), and L. However, how fusion is executed remains unknown. Herpes simplex virus type 1 gH exhibits features typical of viral fusion glycoproteins, and its ectodomain seems to contain a putative internal fusion peptide. Here, we have identified additional internal segments able to interact with membranes and to induce membrane fusion of large unilamellar vesicles. We have applied the hydrophobicity-at-interface scale proposed by Wimley and White (Wimley, W. C., and White, S. H. (1996) Nat. Struct. Biol. 3, 842-848) to identify six hydrophobic stretches within gH with a tendency to partition into the membrane interface, and four of them were able to induce membrane fusion. Experiments in which equimolar mixtures of gH peptides were used indicated that different fusogenic regions may act in a synergistic way. The functional and structural characterization of these segments suggests that herpes simplex virus type 1 gH possesses several fusogenic internal peptides that could participate in the actual fusion event.  相似文献   

10.
Herpes simplex virus specifies five glycoproteins which have been found on the surface of both the intact, infected cells and the virion envelope. In the presence of the drug tunicamycin, glycosylation of the herpes simplex virus type 1 glycoproteins is inhibited. We present in this report evidence that the immunologically specificity of the glycoproteins designated gA, gB, and gD resides mainly in the underglycosylated "core" proteins, as demonstrated by the immunoblotting technique. We showed also that tunicamycin prevented exposure of the viral glycoproteins on the cell surface, as the individual glycoproteins lost their ability to participate as targets for the specific antibodies applied in the antibody-dependent, cell-mediated cytotoxicity test. Immunocytolysis was reduced between 73 and 97%, depending on the specificity of the antibodies used. The intracellular processing of the herpes simplex virus type 1-specific glycoprotein designated gC differed from the processing of gA, gB, and GD, as evidenced by the identification of an underglycosylated but immunochemically modified form of gC on the surface of infected cells grown in the presence of tunicamycin.  相似文献   

11.
Initial contact between herpesviruses and host cells is mediated by virion envelope glycoproteins which bind to cellular receptors. In several alphaherpesviruses, the nonessential glycoprotein gC has been found to interact with cell surface proteoglycans, whereas the essential glycoprotein gD is involved in stable secondary attachment. In addition, gD is necessary for penetration, which involves fusion between virion envelope and cellular cytoplasmic membrane. As opposed to other alphaherpesvirus gD homologs, pseudorabies virus (PrV) gD is not required for direct viral cell-to-cell spread. Therefore, gD- PrV can be passaged in noncomplementing cells by cocultivating infected and noninfected cells. Whereas infectivity was found to be strictly cell associated in early passages, repeated passaging resulted in the appearance of infectivity in the supernatant, finally reaching titers as high as 10(7) PFU/ml (PrV gD- Pass). Filtration experiments indicated that this infectivity was not due to the presence of infected cells, and the absence of gD was verified by Southern and Western blotting and by virus neutralization. Infection of bovine kidney cells constitutively expressing PrV gD interfered with the infectivity of wild-type PrV but did not inhibit that of PrV gD- Pass. Similar results were obtained after passaging of a second PrV mutant, PrV-376, which in addition to gD also lacks gG, gI, and gE. Penetration assays demonstrated that PrV gD- Pass entered cells much more slowly than wild-type PrV. In summary, our data demonstrate the existence of a gD-independent mode of initiation of infection in PrV and indicate that the essential function(s) that gD performs in wild-type PrV infection can be compensated for after passaging. Therefore, regarding the requirement for gD, PrV seems to be intermediate between herpes simplex virus type 1, in which gD is necessary for penetration and cell-to-cell spread, and varicella-zoster virus (VZV), which lacks a gD gene. Our data show that the relevance of an essential protein can change under selective pressure and thus demonstrate a way in which VZV could have evolved from a PrV-like ancestor.  相似文献   

12.
Glycoprotein K (gK) is a virion envelope protein of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2), which plays important roles in virion entry, morphogenesis and egress. Two-hybrid and pull-down assays were utilized to demonstrate that gK and no other HSV-1 genes specifically binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. SPP dominant negative mutants, shRNA against SPP significantly reduced HSV-1 replication in vitro. SPP also affected lysosomes and ER responses to HSV-1 infection. Thus, in this study we have shown for the first time that gK, despite its role in fusion and egress, is also involved in binding the cytoplasmic protein SPP. These results also suggest that SPP plays an important role in viral replication and possibly virus pathogenesis. This makes SPP unique in that its function appears to be required by the virus as no other protein can compensate its loss in terms of viral replication.  相似文献   

13.
Assembly of herpes simplex virus 1 (HSV-1) occurs in the cytoplasm, where the capsid and tegument bud into host cell membranes. It is at this point that the viral glycoproteins are incorporated into the virion, as they are located at the assembly site. We investigated the role of the Rab GTPases in coordinating the assembly process by overexpressing 37 human Rab GTPase-activating proteins (GAPs) and assessing infectious titers. Rab GTPases are key cellular regulators of membrane trafficking events that, by their membrane association and binding of effector proteins, ensure the appropriate fusion of membranes. We identified that TBC1D20 and RN-tre and their partner Rabs, Rab1a/b and Rab43, respectively, are important for virion assembly. In the absence of Rab1a/b, the viral glycoproteins are unable to traffic from the endoplasmic reticulum to the assembly compartment, and thus unenveloped particles build up in the cytoplasm. The defect resulting from Rab43 depletion is somewhat more complex, but it appears that the fragmentation and dispersal of the trans-Golgi network and associated membranes render these compartments unable to support secondary envelopment.  相似文献   

14.
The BJ cell line which constitutively expresses herpes simplex virus 1 glycoprotein D is resistant to infection with herpes simplex viruses. Analysis of clonal lines indicated that resistance to superinfecting virus correlates with the expression of glycoprotein D. Resistance was not due to a failure of attachment to cells, since the superinfecting virus absorbed to the BJ cells. Electron microscopic studies showed that the virions are juxtaposed to coated pits and are then taken up into endocytic vesicles. The virus particles contained in the vesicles were in various stages of degradation. Viral DNA that reached the nucleus was present in fewer copies per BJ cell than that in the parental BHKtk- cells infected at the same multiplicity. Moreover, unlike the viral DNA in BHKtk- cells which was amplified, that in BJ cells decreased in copy number. The results suggest that the glycoprotein D expressed in the BJ cell line interfered with fusion of the virion envelope with the plasma membrane but not with the adsorption of the virus to cells and that the viral proteins that mediate adsorption to and fusion of membranes appear to be distinct.  相似文献   

15.
The role of the transmembrane and the cytoplasmic regions of viral glycoproteins namely, the envelope glycoprotein gD of herpes simplex virus and the integral membrane glycoprotein E3-11.6 K of the nonenveloped adenovirus that are localized in the nuclear envelope has been studied. Chimeras of the cell surface glycoprotein G of vesicular stomatitis virus containing the transmembrane and (or) the cytoplasmic-tail domains of either herpes simplex virus gD or adenovirus E3-11.6 K protein were examined for their intracellular transport and localization. The results show that hybrids containing the membrane anchoring and (or) the cytoplasmic tail domains of either herpes simplex virus gD or adenovirus E3-11.6 K glycoprotein were localized in the nuclear envelope as well as in the endoplasmic reticulum and the Golgi complex. These results suggest that the membrane anchoring and the cytoplasmic domains of herpes simplex virus glycoproteins gD, as well as the adenovirus integral membrane protein E3-11.6 K, were necessary for localization in the nuclear envelope and could influence retention in the endoplasmic reticulum and the Golgi complex.  相似文献   

16.
Cell-free extracts prepared from herpes simplex virus-infected BHK-21 cells rapidly induced exogenous fusion when incubated with indicator monolayers of uninfected BHK-21 cells. Fusion was first observed at 1 h, and peak activity was reached by 4 h. Divalent cations were required for activity. Inhibition of indicator cell macromolecular synthesis, with metabolic inhibitors, failed to prevent formation of cell-free extract-induced polykaryocytes. Removal of virus particles from the cell-free extract by velocity sedimentation centrifugation did not affect cell-free extract exogenous fusion activity. Studies using molecular probes, namely, glycosidases, lectins, and antiserum (directed against either HSV envelope or capsid proteins), suggest that the factor(s) responsible for herpesvirus fusion is a fucosylated glycoprotein that is not a structural component of the virion.  相似文献   

17.
Retrovirus infection starts with the binding of envelope glycoproteins to host cell receptors. Subsequently, conformational changes in the glycoproteins trigger fusion of the viral and cellular membranes. Some retroviruses, such as avian sarcoma/leukosis virus (ASLV), employ a two-step mechanism in which receptor binding precedes low-pH activation and fusion. We used cryo-electron tomography to study virion/receptor/liposome complexes that simulate the interactions of ASLV virions with cells. Binding the soluble receptor at neutral pH resulted in virions capable of binding liposomes tightly enough to alter their curvature. At virion-liposome interfaces, the glycoproteins are ∼3-fold more concentrated than elsewhere in the viral envelope, indicating specific recruitment to these sites. Subtomogram averaging showed that the oblate globular domain in the prehairpin intermediate (presumably the receptor-binding domain) is connected to both the target and the viral membrane by 2.5-nm-long stalks and is partially disordered, compared with its native conformation. Upon lowering the pH, fusion took place. Fusion is a stochastic process that, once initiated, must be rapid, as only final (postfusion) products were observed. These fusion products showed glycoprotein spikes on their surface, with their interiors occupied by patches of dense material but without capsids, implying their disassembly. In addition, some of the products presented a density layer underlying and resolved from the viral membrane, which may represent detachment of the matrix protein to facilitate the fusion process.  相似文献   

18.
A mouse L cell line which expresses the herpex simplex virus type 1 immediate-early polypeptides ICP4 and ICP47 was cotransfected with a cloned copy of the BglII L fragment of herpes simplex virus type 2, which includes the gene for gD, and the plasmid pSV2neo, which contains the aminoglycosyl 3'-phosphotransferase (agpt) gene conferring resistance to the antibiotic G418. A G418-resistant transformed cell line was isolated which expressed herpes simplex virus type 2 gD at higher levels than were found in infected cells. The intracellular transport and processing of gD was compared in transformed and infected cells. In the transformed Z4/6 cells gD was rapidly processed and transported to the cell surface; in contrast, the processing and cell surface appearance of gD in infected parental Z4 cells occurred at a much slower rate, and gD accumulated in nuclear membrane to a greater extent. Thus, the movement of HSV-2 gD to the cell surface in infected cells is retarded as viral glycoproteins accumulate in the nuclear envelope, probably because they interact with other viral structural components.  相似文献   

19.
Glycoprotein IV (gIV) of bovine herpesvirus 1 (BHV-1), a homolog of herpes simplex virus glycoprotein D, represents a major component of the viral envelope and a dominant immunogen. To analyze the functional role of gIV during BHV-1 replication, cell line BUIV3-7, which constitutively expresses gIV, was constructed and used for the isolation of gIV- BHV-1 mutant 80-221, in which the gIV gene was replaced by a lacZ expression cassette. On complementing gIV-expressing cells, the gIV- BHV-1 replicated normally but was unable to form plaques and infectious progeny on noncomplementing cells. Further analysis showed that gIV is essential for BHV-1 entry into target cells, whereas viral gene expression, DNA replication, and envelopment appear unchanged in both noncomplementing and complementing cells infected with phenotypically complemented gIV- BHV-1. The block in entry could be overcome by polyethylene glycol-induced membrane fusion. After passaging of gIV- BHV-1 on complementing cells, a rescued variant, BHV-1res, was isolated and shown to underexpress gIV in comparison with its wild-type parent. Comparison of the penetration kinetics of BHV-1 wild type, phenotypically complemented gIV- BHV-1, and BHV-1res indicated that penetration efficiency correlated with the amount of gIV present in virus particles. In conclusion, we show that gIV of BHV-1 is an essential component of the virion involved in virus entry and that the amount of gIV in the viral envelope modulates the penetration efficiency of the virus.  相似文献   

20.
Many steps in the replication cycle of cytomegalovirus (CMV), like cell entry, capsid assembly, and egress of newly synthesized virions, have not been completely analyzed yet. In order to facilitate these studies, we decided to construct a recombinant CMV that incorporates the green fluorescent protein (GFP) into the nucleocapsid. A comparable herpes simplex virus type 1 (HSV-1) mutant has recently been generated by fusion of the GFP open reading frame (ORF) with the HSV-1 ORF encoding small capsid protein (SCP) VP26 (P. Desai and S. Person, J. Virol. 72:7563-7568, 1998). Recombinant CMV genomes expressing a fusion protein consisting of GFP and the SCP were constructed by the recently established bacterial artificial chromosome mutagenesis procedure. In transfected cells, the SCP-GFP fusion protein localized to distinct foci in the nucleus that may represent sites for capsid assembly (assemblons). However, no viable progeny was reconstituted from these mutant CMV genomes. CMV genomes with deletion of the SCP ORF also did not give rise to infectious virus. Rescue of the mutation by insertion of the SCP gene at an ectopic position in an SCP knockout genome indicates that, in contrast to the HSV-1 SCP, the CMV SCP is essential for viral growth. Expression of the SCP-GFP fusion protein together with the authentic SCP blocked the CMV infection cycle, suggesting that the SCP-GFP fusion protein exerts a dominant-negative effect on the assembly of new virions. The results of this study are discussed with regard to recently published data about the structure of the CMV virion and its differences from the HSV-1 virion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号