首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of habitat and chemical use associated with agriculture can cause population declines of wild pollinators. Less is known about the evolutionary consequences of interactions between species used in commercial agriculture and wild pollinators. Given population declines of many wild bee species, it is crucial to understand if commercial queens become established in natural areas, if wild bees visit agricultural fields and have the potential to interact with commercial bees, and if gene flow occurs between commercial and wild bees. We drew on a long-term data set that documents commercial bumble bee (Bombus impatiens) use in New England, and we conducted genetic analyses of foraging B. impatiens from areas with varying intensities of commercial bee use. In agricultural areas with a history of commercial bee use we also sampled bees directly from commercial hives. We found significant genetic differences among foraging B. impatiens and B. impatiens sampled directly from hives (average pairwise F′ST = 0.14), but not among samples of foraging bees from natural areas (average F′ST among foraging bees?=?0.002). Furthermore, Bayesian analysis of population structure revealed that foraging bees caught in areas with a history of commercial bee use grouped with samples from natural areas. These results document an agricultural setting where there was no widespread introgression of alleles from commercial bumble bees to wild bumble bees, commercial bumble bees did not become established in natural areas, and wild bees were providing pollination services to crops.  相似文献   

2.
When alien pollinator species enter a native community of pollinators in which resource partitioning has been established, the pollination network between plants and pollinators may be modified through the interactions between the pollinators over the use of floral resources. We observed the floral-use patterns of native (Bombus hypocrita and B. deuteronymus) and alien (B. terrestris) bumblebee species in a coastal grassland in northern Japan. We analyzed the factors determining resource partitioning patterns. B. hypocrita tended to visit flowers with shallow or wide open corollas, such as Rosa rugosa, whereas B. deuteronymus visited flowers with complex or deeper corollas, such as Lathyrus japonicus. Given the wider floral preference of B. terrestris, floral use by the alien bumblebees consistently overlapped with that of native bumblebees. The visitation of B. terrestris to R. rugosa flowers was positively correlated with that of B. hypocrita. These bumblebee species frequently used similar floral resources, in part because of the large overlap in the seasonality of their foraging activity. The visitation frequency of B. deuteronymus to L. japonicus flowers was independent of the visitation frequency of other bumblebee species. The major visitation periods of the bumblebees to L. japonicus flowers reciprocally differed between B. deuteronymus and B. terrestris, suggesting phenological resource partitioning between these species. Our study suggests that phenological niche partitioning is more common in specialized flowers (L. japonicus) than in generalized flowers (R. rugosa).  相似文献   

3.
An arthropod deterrent attracts specialised bees to their host plants   总被引:1,自引:0,他引:1  
Many bee species are adapted to just a few specific plants in order to collect pollen (oligolecty). To reproduce successfully, it is important for oligolectic bees to find and recognise the specific host flowers. In this study, we investigated the role of floral volatiles used by an oligolectic bee to recognise its host plants. We compared the attractiveness of natural and synthetic scent samples of host flowers to foraging-naïve and -experienced Hoplitis adunca (Megachilidae) bees that are specialised on Echium and Pontechium (Boraginaceae) plants. The investigations showed that naïve H. adunca females are attracted to 1,4-benzoquinone. During their lifetime, bees learn additional floral cues while foraging on host flowers. In contrast to naïve ones, experienced H. adunca females use, in addition to 1,4-benzoquinone, other compounds to recognise their host plants. 1,4-Benzoquinone is an uncommon floral compound only known from the host plants of H. adunca, and is therefore ideally suited to be used as a plant-specific recognition cue. Several arthropods use this compound to deter insect predators. Therefore, 1,4-benzoquinone as an attractant in Echium flowers may have evolved from a primary function as a defensive compound against insect herbivores.  相似文献   

4.
Social corbiculate bees such as honey bees and bumble bees maintain a specific beneficial core microbiome which is absent in wild bees. It has been suggested that maintaining this microbiome can prevent disease and keep bees healthy. The main aim of our study was to identify if there are any core bacterial groups in the non-corbiculate bees Ceratina and Megalopta that have been previously overlooked. We additionally test for associations between the core bee microbes and pollen provisions to look for potential transmission between the two. We identify three enterotypes in Ceratina samples, with thirteen core bacterial phylotypes in Ceratina females: Rosenbergiella, Pseudomonas, Gilliamella, Lactobacillus, Caulobacter, Snodgrassella, Acinetobacter, Corynebacterium, Sphingomonas, Commensalibacter, Methylobacterium, Massilia, and Stenotrophomonas, plus 19 in pollen (6 of which are shared by bees). Unlike Apis bees, whose gut microbial community differs compared to their pollen, Ceratina adults and pollen largely share a similar microbial composition and enterotype difference was largely explained by pollen age. Megalopta displays a highly diverse composition of microbes throughout all adults, yet Lactobacillus and Saccharibacter were prevalent in 90% of adults as core bacteria. Only Lactobacillus was both a core bee and pollen provision microbe in all three species. The consequences of such diversity in core microbiota between bee genera and their associations with pollen are discussed in relation to identifying potentially beneficial microbial taxa in wild bees to aid the conservation of wild, understudied, non-model bee species.  相似文献   

5.
Mitochondrial cytochrome oxidase I (COI) partial sequences are widely used in taxonomy for species identification. Increasingly, these sequence identities are combined with modelling approaches to delineate species. Yet the validity of species delineation based on such DNA ‘barcodes’ is rarely tested and may be called into question by phenomena such as ancestral polymorphisms in DNA sequences, phylogeographic divergence, mitochondrial introgression and hybridization, or distortion of mitochondrial inheritance through such factors as Wolbachia infection. The common and widespread European bumble bee Bombus lucorum s. lato contains three distinct mitochondrial DNA lineages that are assumed to represent three cryptic species, namely Bombus cryptarum, B. lucorum s. str. and B. magnus. To test whether nuclear gene pools of the three putative species were differentiated, we genotyped 304 sympatric members of the lucorum complex (54 B. cryptarum females, 168 B. lucorum s. str. females and 82 B. magnus females, as defined using mtDNA COI haplotypes) from 11 localities spread across the island of Ireland at seven nuclear microsatellite loci. Multilocus genotypes clustered into three discrete groups that largely corresponded to the three mtDNA lineages: B. cryptarum, B. lucorum s. str. and B. magnus. The good fit of mitochondrial haplotype to nuclear (microsatellite) genotypic data supports the view that these three bumble bee taxa are reproductively isolated species, as well as providing a vindication of species identity using so-called DNA barcodes.  相似文献   

6.
Patterns of genetic structure and diversity are largely mediated by a species’ ecological niche and sensitivity to climate variation. Some species with narrow ecological niches have been found to exhibit increased population differentiation, limited gene flow across populations, and reduced population genetic diversity. In this study, we examine patterns of population genetic structure and diversity of four bumble bee species that are broadly sympatric, but do not necessarily inhabit the same ecological niche in the Pacific Northwest of the United States. Testing for the effect of isolation by geographic distance (IBD) with linearized F st and D est found that Bombus sylvicola and B. mixtus exhibited significant IBD across populations. In contrast, both B. melanopygus and B. flavifrons, two species that are distributed across a broad elevation gradient, exhibited no IBD, a result further corroborated by Bayesian a priori population assignment tests. Furthermore, we discovered that B. sylvicola populations distributed on the Olympic Peninsula have significantly less average allelic diversity than populations distributed in the Cascade Mountains. Our results suggest that populations distributed in the Olympic Mountains represent a distinct genetic cluster relative to the Cascade Mountains, with B. sylvicola and B. mixtus likely experiencing the greatest degree of population genetic differentiation relative to B. flavifrons and B. melanopygus. While bumble bees are known to co-exist across a diversity of habitats, our results demonstrate that underlying population genetic structure and diversity may not necessarily be similar across species, and are largely governed by their respective niches.  相似文献   

7.
Flowers of the complex orchid hybrid Burrageara ‘Stefan Isler Lava Flow’ had been shown previously to react sensitively to ethylene. Via Agrobacterium tumefaciens, the mutant ethylene receptor ETHYLENE RESPONSE 1 (etr1-1) from Arabidopsis thaliana under the control of the flower-specific promoter FLOWER BINDING PROTEIN 1 (fbp1) from Petunia hybrida was transferred to Burrageara. One single-copy event was analyzed in this study aiming to investigate the expression of the fbp1::etr1-1 transgene in different plant and flower organs by quantitative RT-PCR and the reaction of flowers and inflorescences to ethylene. It was shown that the heterologous promoter led to high expression levels in the perianth of the orchid flowers compared to low levels in leaves and roots. The expression shift to the first whorl (sepals) described here corresponds to extended expression of endogenous B class MADS box homeotic genes in orchids in general. The transgenic plants grew and developed similar to the wild-type plants, except for slightly faster rooting in vitro and smaller flowers. Flower longevity was improved by 7 days in 10 ppm ethylene. Moreover, bud drop starting at day 5 of incubation of inflorescences in 10 ppm ethylene in the wild-type was efficiently prevented for at least 19 days in the fbp1::etr1-1 transgenic plants. The function of the tissue-specific promoter fbp1 and the mutant receptor etr1-1 was shown for the first time in a monocotyledonous plant.  相似文献   

8.
Social insect colonies are high-value foraging targets for insectivores, prompting the evolution of complex colony defensive adaptations as well as specialized foraging tactics in social insect predators. Predatory ants that forage on other social insects employ a diverse range of behaviors targeted at specific prey species. Here, we describe a solitary foraging strategy of the ant Ectatomma tuberculatum, on nest guards of the stingless bee Tetragonisca angustula. We observed multiple instances of E. tuberculatum ambushing and successfully capturing the hovering and standing guards of T. angustula near nest entrances. The unique hovering behavior of the guard caste of this bee species, an adaptation to frequent cleptoparasitism by other stingless bees, may make these guards particularly vulnerable to ground-based, ambush attacks by E. tuberculatum. Likewise, the behavior of the foraging ants appears to adaptively exploit the defensive formations and activity patterns of these bees. These observations suggest an adaptive and targeted predatory strategy aimed at gathering external guard bees as prey from these heavily fortified nests.  相似文献   

9.
Plants might be under selection for both attracting efficient pollinators and deterring wasteful visitors. Particular floral traits can act as exploitation barriers by discouraging the unwelcome visitors. In the genus Penstemon, evolutionary shifts from insect pollination to more efficient hummingbird pollination have occurred repeatedly, resulting in the convergent evolution of floral traits commonly present in hummingbird-pollinated flowers. Two of these traits, a reduced or reflexed lower petal lip and a narrow corolla, were found in a previous flight-cage study to affect floral handling time by bumble bees, therefore potentially acting as “anti-bee” traits affecting preference. To test whether these traits do reduce bumble bee visitation in natural populations, we manipulated these two traits in flowers of bee-pollinated Penstemon strictus to resemble hummingbird-adapted close relatives and measured the preferences of free-foraging bees. Constricted corollas strongly deterred bee visitation in general, and particularly reduced visits by small bumble bees, resulting in immediate specialization to larger, longer-tongued bumble bees. Bees were also deterred—albeit less strongly—by lipless flowers. However, we found no evidence that lip removal and corolla constriction interact to further affect bee preference. We conclude that narrow corolla tubes and reduced lips in hummingbird-pollinated penstemons function as exploitation barriers that reduce bee access to nectaries or increase handling time.  相似文献   

10.
Among associations of plants and their pollinating bees, mutually specialized pairings are rare. Typically, either pollen specialist (oligolectic) bees are joined by polylectic bees in a flowering species’ pollinator guild, or specialized flowers are pollinated by one or more polylectic bees. The bee Andrena astragali is a narrow oligolege, collecting pollen solely from two nearly identical species of death camas (Toxicoscordion, formerly Zigadenus). Neurotoxic alkaloids of these plants are implicated in sheep and honey bee poisoning. In this study, T. paniculatum, T. venenosum and co-flowering forbs were sampled for bees at 15 sites along a 900-km-long east–west transect across the northern Great Basin plus an altitudinal gradient in northern Utah’s Bear River Range. Only A. astragali bees were regularly seen visiting flowering panicles of these Toxicoscordion. In turn, this bee was never among the 170 bee species caught at 17 species of other prevalent co-occurring wildflowers in the same five state region (38,000 plants surveyed). Our field pollination experiments show that T. paniculatum is primarily an outcrosser dependent on pollinator visitation for most capsule and seed set. Thus, both A. astragali and two sister species of Toxicoscordion are narrowly specialized and co-dependent on each other for reproduction, illustrating a rare case of obligate mutual specialization in bee–plant interactions.  相似文献   

11.
Ants are ordinarily faced with a succession of bifurcations along their foraging networks. Given that there is no directionality in pheromone trails, each bifurcation is potentially an opportunity for error in the trajectory of laden workers to the nest, which could entail considerable inefficiencies in the transportation of food to the colony. Leaf-cutting ants (Atta and Acromyrmex) commonly show intense traffic and complex foraging trail systems, which make them ideal organisms to study worker behavior in trail bifurcations. The behavior of leaf-cutting ants of the genus Acromyrmex in trail bifurcations is still largely unexplored. Thus, this study aimed to assess the behavior of Acromyrmex crassispinus workers on trail bifurcations and to investigate whether differences in ant flow on foraging trails influence the error rate of nestbound laden workers at trail bifurcation. There was a negative relationship between ant flow and error rate of nestbound laden workers. Most workers walked in the central part of the foraging trails but occupied a broader area of the foraging trail when the ant flow was high. The results of this study provide valuable insight into the organization of traffic flow in A. crassispinus and its impacts on the foraging strategy of the species.  相似文献   

12.
A honeybee colony is a superorganism that has evolved precise communication systems, which allow the colony to gather information from numerous individuals and coordinate its behavior. Alarm pheromones, such as isopentyl acetate (IPA), the main component of sting alarm pheromone, play a critical role in the coordination of individual behaviors as well as colony communication in honeybee colonies. In this study, honeybees (Apis mellifera ligustica and Apis cerana cerana) were exposed to relatively high levels of IPA at a foraging site (6–8 bee equivalents) and inside their colony (28–58 bee equivalents) to investigate the influence of alarm pheromones on foraging activity and hive flight activity. IPA reduced the number of bees that flew out the hive, foraged, and waggle danced. Under both contexts in the hive and at the food source, IPA can therefore inhibit honey bee foraging and foraging communication.  相似文献   

13.
The impacts of predators on bee foraging behavior are varied, but have been suggested to depend on both the type of predator (namely their hunting strategy) and also risk assessment by the prey (i.e., ability to perceive predators and learn to avoid them). However, nearly all studies have explored these impacts using social bees, despite the fact that solitary bees are extremely diverse, often specialized in their floral interactions, and may exhibit different behaviors in response to flower-occupying predators. In this study, we examined foraging behaviors of wild solitary long-horned bees (Melissodes spp.) in response to a cryptic predator, the ambush bug (Phymata americana) on the bees’ primary floral host, the prairie sunflower (Helianthus petiolaris). We found sex-specific differences in foraging behaviors of bees, but little evidence that ambush bugs affected either pre-landing or post-landing foraging behaviors. Male bees visited flowers three times more often than females but female bees were five times more likely to land than males. Ambush bugs did not reduce visitation in either sex. Spectral analysis through a bee vision model indicated that ambush bug dorsal coloration was indistinguishable from the disc flowers of sunflowers, suggesting that ambush bugs are indeed cryptic and likely rarely detected by solitary bees. We discuss the implications of these findings for the perceived risk of predation in solitary bees and compare them to other studies of social bees.  相似文献   

14.
The Eurasian bumble bee Bombus terrestris Linnaeus has been used commercially for pollination of a large number of crop species worldwide. This species has become invasive in several countries where it has escaped into natural environments. This species has become naturalized in many zones of Chile and southern Argentina, and may potentially invade other regions and countries in South America. These naturalized populations of B. terrestris have been associated with rapid population declines of the native bee B. dahlbomii Guérin-Méneville. We report new records of the exotic bee B. terrestris in the Region de Arica y Parinacota in the far north of Chile, which includes portions of the Atacama Desert. We used species distribution models (SDMs) and multivariate analyses to evaluate whether these occurrences represent new escapes from managed colonies or natural dispersal of the species from its southern invaded range. These reports of B. terrestris indicate a northward expansion of this bee. In our analyses, these new areas of occurrences have environmental conditions similar to those observed in the species’ southern invaded range, and our SDMs predict that B. terrestris dispersal through the Atacama is possible, although not likely given the occasional flower blooming in that region of Chile. These new occurrences in northern Chile reflect a potential for future invasion into other regions of South America by B. terrestris. Future surveys in the area should be intensified to evaluate if viable populations of this invasive species may become established.  相似文献   

15.

Background

The impact of social parasites on their hosts’ fitness is a strong selective pressure that can lead to the evolution of adapted defence strategies. Guarding the nest to prevent the intrusion of parasites is a widespread response of host species. If absolute rejection of strangers provides the best protection against parasites, more fine-tuned strategies can prove more adaptive. Guarding is indeed costly and not all strangers constitute a real threat. That is particularly true for worker reproductive parasitism in social insects since only a fraction of non-nestmate visitors, the fertile ones, can readily engage in parasitic reproduction. Guards should thus be more restrictive towards fertile than sterile non-nestmate workers. We here tested this hypothesis by examining the reaction of nest-entrance guards towards nestmate and non-nestmate workers with varying fertility levels in the bumble bee Bombus terrestris. Because social recognition in social insects mainly relies on cuticular lipids (CLs), chemical analysis was also conducted to examine whether workers’ CLs could convey the relevant information upon which guards could base their decision. We thus aimed to determine whether an adapted defensive strategy to worker reproductive parasitism has evolved in B. terrestris colonies.

Results

Chemical analysis revealed that the cuticular chemical profiles of workers encode information about both their colony membership and their current fertility, therefore providing potential recognition cues for a suitable adjustment of the guards’ defensive decisions. We found that guards were similarly tolerant towards sterile non-nestmate workers than towards nestmate workers. However, as predicted, guards responded more aggressively towards fertile non-nestmates.

Conclusion

Our results show that B. terrestris guards discriminate non-nestmates that differ in their reproductive potential and respond more strongly to the individuals that are a greatest threat for the colony. Cuticular hydrocarbons are the probable cues underlying the specific recognition of reproductive parasites, with the specific profile of highly fertile bees eliciting the agonistic response when combined with non-colony membership information. Our study therefore provides a first piece of empirical evidence supporting the hypothesis that an adapted defensive strategy against worker reproductive parasitism exists in B. terrestris colonies.
  相似文献   

16.
Little is known about the natural history of wild honey bee (Apis mellifera) colonies in the Eastern Cape Province of South Africa. The goal of this research was to examine nest site characteristics of honey bee (A. m. capensis/A. m. scutellata hybrid) colonies sampled from a variety of habitats (nature reserves, livestock farms, and an urban setting) in the Eastern Cape. We also determined how nest site location related to various colony strength parameters. In general, colonies not nesting in ground cavities tended to nest in locations >6 m high when nesting in cliffs and buildings and >2 m high when nesting in trees. Colonies typically nested in cavities whose entrances faced a southeasterly direction and were ~40 L in volume. We sampled a subset of colonies to determine the relationship between nest type and the following colony strength parameters: total area of comb in the colony, the volume of stored honey, pollen, and brood, adult bee population, the weight per adult bee, and the bee/nest cavity volume ratio. In general, colonies nesting in cliffs tended to be stronger than those nesting in the ground or trees. Our findings provide new insights into the nesting biology of honey bees in the Eastern Cape, South Africa, perhaps leading to the formation of conservation recommendations for honey bees in this region.  相似文献   

17.
The brown planthopper (Nilaparvata lugens Stål; BPH) has become a severe constraint on rice production. Identification and pyramiding BPH-resistance genes is an economical and effective solution to increase the resistance level of rice varieties. All the BPH-resistance genes identified to date have been from indica rice or wild species. The BPH12 gene in the indica rice accession B14 is derived from the wild species Oryza latifolia. Using an F2 population from a cross between the indica cultivar 93-11 and B14, we mapped the BPH12 gene to a 1.9-cM region on chromosome 4, flanked by the markers RM16459 and RM1305. In this population, BPH12 appeared to be partially dominant and explained 73.8% of the phenotypic variance in BPH resistance. A near-isogenic line (NIL) containing the BPH12 locus in the background of the susceptible japonica variety Nipponbare was developed and crossed with a NIL carrying BPH6 to generate a pyramid line (PYL) with both genes. BPH insects showed significant differences in non-preference in comparisons between the lines harboring resistance genes (NILs and PYL) and Nipponbare. BPH growth and development were inhibited and survival rates were lower on the NIL-BPH12 and NIL-BPH6 plants compared to the recurrent parent Nipponbare. PYL-BPH6 + BPH12 exhibited 46.4, 26.8 and 72.1% reductions in population growth rates (PGR) compared to NIL-BPH12, NIL-BPH6 and Nipponbare, respectively. Furthermore, insect survival rates were the lowest on the PYL-BPH6 + BPH12 plants. These results demonstrated that pyramiding different BPH-resistance genes resulted in stronger antixenotic and antibiotic effects on the BPH insects. This gene pyramiding strategy should be of great benefit for the breeding of BPH-resistant japonica rice varieties.  相似文献   

18.
Bees collect pollen as an important resource for offspring development while acting as pollen vectors for the plants visited. Foraging preferences of pollinators together with plant species availability shape the web of interactions at the local scale. In this study, we focused on the bee pollinator community of a population of the rare protected perennial herb Dictamnus albus, with the aim to characterise the pollen preferences and the foraging niche overlap among species through time. Bees were sampled during four consecutive years in a natural population of D. albus, throughout the blooming period of the plant species. We performed an analysis of insect pollen loads to investigate the interactions with the study species and the co-flowering plants in the area, and to evaluate the degree of foraging overlap among pollinators. Over the study years, all bee species showed a high fidelity to D. albus (60–80%), even if some taxa preferentially collected pollen from other flowering species. The foraging niche overlap in the pollinator community decreased together with an increased diversity of co-flowering plant species. The results obtained indicate that bees preferentially forage on D. albus in the studied area, but that co-flowering species contribute to complement their diet and likely reduce competition for foraging resources. It appears therefore important to maintain a high diversity of co-flowering plants to preserve the diversity in the studied pollinator community of D. albus.  相似文献   

19.
Small cursorial ectotherms risk overheating when foraging in the tropical forest canopy, where the surfaces of unshaded tree branches commonly exceed 50 °C. We quantified the heating and subsequent cooling rates of 11 common canopy ant species from Panama and tested the hypothesis that ant workers stop foraging at temperatures consistent with the prevention of overheating. We created hot experimental “sunflecks” on existing foraging trails of four ant species from different clades and spanning a broad range of body size, heating rate, and critical thermal maxima (CTmax). Different ant species exhibited very different heating rates in the lab, and these differences did not follow trends predicted by body size alone. Experiments with ant models showed that heating rates are strongly affected by color in addition to body size. Foraging workers of all species showed strong responses to heating and consistently abandoned focal sites between 36 and 44 °C. Atta colombica and Azteca trigona workers resumed foraging shortly after heat was removed, but Cephalotes atratus and Dolichoderus bispinosus workers continued to avoid the heated patch even after >5 min of cooling. Large foraging ants (C. atratus) responded slowly to developing thermal extremes, whereas small ants (A. trigona) evacuated sunflecks relatively quickly, and at lower estimated body temperatures than when revisiting previously heated patches. The results of this study provide the first field-based insight into how foraging ants respond behaviorally to the heterogeneous thermal landscape of the tropical forest canopy.  相似文献   

20.
Apolygus lucorum (Heteroptera: Miridae), an important herbivore feeding on a broad range of cultivated and wild plants, always shows a strong preference for flowering host plants. In a prior study, we found A. lucorum fecundity to be higher on flowering plants than on plants still at the vegetative stage. This led us to hypothesize that ovarian development and vitellogenin (Vg) expression in A. lucorum, which are highly correlated with its fecundity, might respond positively to the presence of host plant flowers as food. In this study, two types of plant foods, i.e., cotton terminals and flowers, and cotton terminals only without flowers, were examined. Adult females on terminals with flowers had higher ovarian development levels than those of similar stage held on terminals without flowers. Moreover, adults on terminals with flowers had more follicles per ovary throughout adult life than those held on terminals without flowers, and the length of the most developed ovariole of the former treatment was significantly longer than that of the latter diet. Use of qRT-PCR showed that the expression level of Vg was significantly higher in adults raised on a diet with flowers compared with those raised on the diet without flowers. These results suggest that host plant flowers significantly facilitate ovarian development and Vg gene expression of A. lucorum adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号