首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
The agnostic screening performed by genome-wide association studies (GWAS) has uncovered associations for previously unsuspected genes. Knowledge about the functional role of these genes is crucial and laboratory mouse models can provide such information. Here, we describe a systematic juxtaposition of human GWAS-discovered loci versus mouse models in order to appreciate the availability of mouse models data, to gain biological insights for the role of these genes and to explore the extent of concordance between these two lines of evidence. We perused publicly available data (NHGRI database for human associations and Mouse Genome Informatics database for mouse models) and employed two alternative approaches for cross-species comparisons, phenotype- and gene-centric. A total of 293 single gene-phenotype human associations (262 unique genes and 69 unique phenotypes) were evaluated. In the phenotype-centric approach, we identified all mouse models and related ortholog genes for the 51 human phenotypes with a comparable phenotype in mice. A total of 27 ortholog genes were found to be associated with the same phenotype in humans and mice, a concordance that was significantly larger than expected by chance (p<0.001). In the gene-centric approach, we were able to locate at least 1 knockout model for 60% of the 262 genes. The knockouts for 35% of these orthologs displayed pre- or post-natal lethality. For the remaining non-lethal orthologs, the same organ system was involved in mice and humans in 71% of the cases (p<0.001). Our project highlights the wealth of available information from mouse models for human GWAS, catalogues extensive information on plausible physiologic implications for many genes, provides hypothesis-generating findings for additional GWAS analyses and documents that the concordance between human and mouse genetic association is larger than expected by chance and can be informative.  相似文献   

4.
The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly with that of the standard univariate approach. We introduce a new method and software, MultiPhen, that models multiple phenotypes simultaneously in a fast and interpretable way. By performing ordinal regression, MultiPhen tests the linear combination of phenotypes most associated with the genotypes at each SNP, and thus potentially captures effects hidden to single phenotype GWAS. We demonstrate via simulation that this approach provides a dramatic increase in power in many scenarios. There is a boost in power for variants that affect multiple phenotypes and for those that affect only one phenotype. While other multivariate methods have similar power gains, we describe several benefits of MultiPhen over these. In particular, we demonstrate that other multivariate methods that assume the genotypes are normally distributed, such as canonical correlation analysis (CCA) and MANOVA, can have highly inflated type-1 error rates when testing case-control or non-normal continuous phenotypes, while MultiPhen produces no such inflation. To test the performance of MultiPhen on real data we applied it to lipid traits in the Northern Finland Birth Cohort 1966 (NFBC1966). In these data MultiPhen discovers 21% more independent SNPs with known associations than the standard univariate GWAS approach, while applying MultiPhen in addition to the standard approach provides 37% increased discovery. The most associated linear combinations of the lipids estimated by MultiPhen at the leading SNPs accurately reflect the Friedewald Formula, suggesting that MultiPhen could be used to refine the definition of existing phenotypes or uncover novel heritable phenotypes.  相似文献   

5.
Using a phenome-wide association study (PheWAS) approach, we comprehensively tested genetic variants for association with phenotypes available for 70,061 study participants in the Population Architecture using Genomics and Epidemiology (PAGE) network. Our aim was to better characterize the genetic architecture of complex traits and identify novel pleiotropic relationships. This PheWAS drew on five population-based studies representing four major racial/ethnic groups (European Americans (EA), African Americans (AA), Hispanics/Mexican-Americans, and Asian/Pacific Islanders) in PAGE, each site with measurements for multiple traits, associated laboratory measures, and intermediate biomarkers. A total of 83 single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) were genotyped across two or more PAGE study sites. Comprehensive tests of association, stratified by race/ethnicity, were performed, encompassing 4,706 phenotypes mapped to 105 phenotype-classes, and association results were compared across study sites. A total of 111 PheWAS results had significant associations for two or more PAGE study sites with consistent direction of effect with a significance threshold of p<0.01 for the same racial/ethnic group, SNP, and phenotype-class. Among results identified for SNPs previously associated with phenotypes such as lipid traits, type 2 diabetes, and body mass index, 52 replicated previously published genotype–phenotype associations, 26 represented phenotypes closely related to previously known genotype–phenotype associations, and 33 represented potentially novel genotype–phenotype associations with pleiotropic effects. The majority of the potentially novel results were for single PheWAS phenotype-classes, for example, for CDKN2A/B rs1333049 (previously associated with type 2 diabetes in EA) a PheWAS association was identified for hemoglobin levels in AA. Of note, however, GALNT2 rs2144300 (previously associated with high-density lipoprotein cholesterol levels in EA) had multiple potentially novel PheWAS associations, with hypertension related phenotypes in AA and with serum calcium levels and coronary artery disease phenotypes in EA. PheWAS identifies associations for hypothesis generation and exploration of the genetic architecture of complex traits.  相似文献   

6.
Lehne B  Lewis CM  Schlitt T 《PloS one》2011,6(6):e20133
Interpreting Genome-Wide Association Studies (GWAS) at a gene level is an important step towards understanding the molecular processes that lead to disease. In order to incorporate prior biological knowledge such as pathways and protein interactions in the analysis of GWAS data it is necessary to derive one measure of association for each gene. We compare three different methods to obtain gene-wide test statistics from Single Nucleotide Polymorphism (SNP) based association data: choosing the test statistic from the most significant SNP; the mean test statistics of all SNPs; and the mean of the top quartile of all test statistics. We demonstrate that the gene-wide test statistics can be controlled for the number of SNPs within each gene and show that all three methods perform considerably better than expected by chance at identifying genes with confirmed associations. By applying each method to GWAS data for Crohn's Disease and Type 1 Diabetes we identified new potential disease genes.  相似文献   

7.
Genome-wide association studies (GWAS) have been successful in identifying single nucleotide polymorphisms (SNPs) associated with many traits and diseases. However, at existing sample sizes, these variants explain only part of the estimated heritability. Leverage of GWAS results from related phenotypes may improve detection without the need for larger datasets. The Bayesian conditional false discovery rate (cFDR) constitutes an upper bound on the expected false discovery rate (FDR) across a set of SNPs whose p values for two diseases are both less than two disease-specific thresholds. Calculation of the cFDR requires only summary statistics and have several advantages over traditional GWAS analysis. However, existing methods require distinct control samples between studies. Here, we extend the technique to allow for some or all controls to be shared, increasing applicability. Several different SNP sets can be defined with the same cFDR value, and we show that the expected FDR across the union of these sets may exceed expected FDR in any single set. We describe a procedure to establish an upper bound for the expected FDR among the union of such sets of SNPs. We apply our technique to pairwise analysis of p values from ten autoimmune diseases with variable sharing of controls, enabling discovery of 59 SNP-disease associations which do not reach GWAS significance after genomic control in individual datasets. Most of the SNPs we highlight have previously been confirmed using replication studies or larger GWAS, a useful validation of our technique; we report eight SNP-disease associations across five diseases not previously declared. Our technique extends and strengthens the previous algorithm, and establishes robust limits on the expected FDR. This approach can improve SNP detection in GWAS, and give insight into shared aetiology between phenotypically related conditions.  相似文献   

8.
9.

Background

GWAS owe their popularity to the expectation that they will make a major impact on diagnosis, prognosis and management of disease by uncovering genetics underlying clinical phenotypes. The dominant paradigm in GWAS data analysis so far consists of extensive reliance on methods that emphasize contribution of individual SNPs to statistical association with phenotypes. Multivariate methods, however, can extract more information by considering associations of multiple SNPs simultaneously. Recent advances in other genomics domains pinpoint multivariate causal graph-based inference as a promising principled analysis framework for high-throughput data. Designed to discover biomarkers in the local causal pathway of the phenotype, these methods lead to accurate and highly parsimonious multivariate predictive models. In this paper, we investigate the applicability of causal graph-based method TIE* to analysis of GWAS data. To test the utility of TIE*, we focus on anti-CCP positive rheumatoid arthritis (RA) GWAS datasets, where there is a general consensus in the community about the major genetic determinants of the disease.

Results

Application of TIE* to the North American Rheumatoid Arthritis Cohort (NARAC) GWAS data results in six SNPs, mostly from the MHC locus. Using these SNPs we develop two predictive models that can classify cases and disease-free controls with an accuracy of 0.81 area under the ROC curve, as verified in independent testing data from the same cohort. The predictive performance of these models generalizes reasonably well to Swedish subjects from the closely related but not identical Epidemiological Investigation of Rheumatoid Arthritis (EIRA) cohort with 0.71-0.78 area under the ROC curve. Moreover, the SNPs identified by the TIE* method render many other previously known SNP associations conditionally independent of the phenotype.

Conclusions

Our experiments demonstrate that application of TIE* captures maximum amount of genetic information about RA in the data and recapitulates the major consensus findings about the genetic factors of this disease. In addition, TIE* yields reproducible markers and signatures of RA. This suggests that principled multivariate causal and predictive framework for GWAS analysis empowers the community with a new tool for high-quality and more efficient discovery.

Reviewers

This article was reviewed by Prof. Anthony Almudevar, Dr. Eugene V. Koonin, and Prof. Marianthi Markatou.  相似文献   

10.
Primary open angle glaucoma (POAG) is a complex disease and is one of the major leading causes of blindness worldwide. Genome-wide association studies have successfully identified several common variants associated with glaucoma; however, most of these variants only explain a small proportion of the genetic risk. Apart from the standard approach to identify main effects of variants across the genome, it is believed that gene-gene interactions can help elucidate part of the missing heritability by allowing for the test of interactions between genetic variants to mimic the complex nature of biology. To explain the etiology of glaucoma, we first performed a genome-wide association study (GWAS) on glaucoma case-control samples obtained from electronic medical records (EMR) to establish the utility of EMR data in detecting non-spurious and relevant associations; this analysis was aimed at confirming already known associations with glaucoma and validating the EMR derived glaucoma phenotype. Our findings from GWAS suggest consistent evidence of several known associations in POAG. We then performed an interaction analysis for variants found to be marginally associated with glaucoma (SNPs with main effect p-value <0.01) and observed interesting findings in the electronic MEdical Records and GEnomics Network (eMERGE) network dataset. Genes from the top epistatic interactions from eMERGE data (Likelihood Ratio Test i.e. LRT p-value <1e-05) were then tested for replication in the NEIGHBOR consortium dataset. To replicate our findings, we performed a gene-based SNP-SNP interaction analysis in NEIGHBOR and observed significant gene-gene interactions (p-value <0.001) among the top 17 gene-gene models identified in the discovery phase. Variants from gene-gene interaction analysis that we found to be associated with POAG explain 3.5% of additional genetic variance in eMERGE dataset above what is explained by the SNPs in genes that are replicated from previous GWAS studies (which was only 2.1% variance explained in eMERGE dataset); in the NEIGHBOR dataset, adding replicated SNPs from gene-gene interaction analysis explain 3.4% of total variance whereas GWAS SNPs alone explain only 2.8% of variance. Exploring gene-gene interactions may provide additional insights into many complex traits when explored in properly designed and powered association studies.  相似文献   

11.
Maize (Zea mays mays) oil is a rich source of polyunsaturated fatty acids (FAs) and energy, making it a valuable resource for human food, animal feed, and bio‐energy. Although this trait has been studied via conventional genome‐wide association study (GWAS), the single nucleotide polymorphism (SNP)‐trait associations generated by GWAS may miss the underlying associations when traits are based on many genes, each with small effects that can be overshadowed by genetic background and environmental variation. Detecting these SNPs statistically is also limited by the levels set for false discovery rate. A complementary pathways analysis that emphasizes the cumulative aspects of SNP‐trait associations, rather than just the significance of single SNPs, was performed to understand the balance of lipid metabolism, conversion, and catabolism in this study. This pathway analysis indicated that acyl‐lipid pathways, including biosynthesis of wax esters, sphingolipids, phospholipids and flavonoids, along with FA and triacylglycerol (TAG) biosynthesis, were important for increasing oil and FA content. The allelic variation found among the genes involved in many degradation pathways, and many biosynthesis pathways leading from FAs and carbon partitioning pathways, was critical for determining final FA content, changing FA ratios and, ultimately, to final oil content. The pathways and pathway networks identified in this study, and especially the acyl‐lipid associated pathways identified beyond what had been found with GWAS alone, provide a real opportunity to precisely and efficiently manipulate high‐oil maize genetic improvement.  相似文献   

12.
Pathway-based analysis as an alternative approach can provide complementary information to single-marker genome-wide association studies (GWASs), which always ignore the epistasis and does not have sufficient power to find rare variants. In this study, using genotypes from a genome-wide association study (GWAS), pathway-based association studies were carried out by a modified Gene Set Enrichment Algorithm (GSEA) method (GenGen) for triglyceride in 1028 unrelated European-American extremely obese females (BMI≥35kg/m2) and normal-weight controls (BMI<25kg/m2), and another pathway association analysis (ICSNPathway) was also used to verify the GenGen result in the same data. The GO0009110 pathway (vitamin anabolism) was among the strongest associations with triglyceride (empirical P<0.001); the result remained significant after FDR correction (P = 0.022). MMAB, an obesity-related locus, included in this pathway. The ABCG1 and BCL6 gene was found in several triglyceride-related pathways (empirical P<0.05), which were also replicated by ICSNPathway (empirical P<0.05, FDR<0.05). We also performed single-marked GWAS using PLINK for TG levels (log-transformed). Significant associations were found between ASTN2 gene SNPs and plasma triglyceride levels (rs7035794, P = 2.24×10−10). Our study suggested that vitamin anabolism pathway, BCL6 gene pathways and ASTN2 gene may contribute to the genetic variation of plasma triglyceride concentrations.  相似文献   

13.
Levels of sex differences for human body size and shape phenotypes are hypothesized to have adaptively reduced following the agricultural transition as part of an evolutionary response to relatively more equal divisions of labor and new technology adoption. In this study, we tested this hypothesis by studying genetic variants associated with five sexually differentiated human phenotypes: height, body mass, hip circumference, body fat percentage, and waist circumference. We first analyzed genome-wide association (GWAS) results for UK Biobank individuals (~194,000 females and ~167,000 males) to identify a total of 114,199 single nucleotide polymorphisms (SNPs) significantly associated with at least one of the studied phenotypes in females, males, or both sexes (P<5x10-8). From these loci we then identified 3,016 SNPs (2.6%) with significant differences in the strength of association between the female- and male-specific GWAS results at a low false-discovery rate (FDR<0.001). Genes with known roles in sexual differentiation are significantly enriched for co-localization with one or more of these SNPs versus SNPs associated with the phenotypes generally but not with sex differences (2.73-fold enrichment; permutation test; P = 0.0041). We also confirmed that the identified variants are disproportionately associated with greater phenotype effect sizes in the sex with the stronger association value. We then used the singleton density score statistic, which quantifies recent (within the last ~3,000 years; post-agriculture adoption in Britain) changes in the frequencies of alleles underlying polygenic traits, to identify a signature of recent positive selection on alleles associated with greater body fat percentage in females (permutation test; P = 0.0038; FDR = 0.0380), directionally opposite to that predicted by the sex differences reduction hypothesis. Otherwise, we found no evidence of positive selection for sex difference-associated alleles for any other trait. Overall, our results challenge the longstanding hypothesis that sex differences adaptively decreased following subsistence transitions from hunting and gathering to agriculture.  相似文献   

14.
Genome-wide association studies (GWAS) led to the identification of numerous novel loci for a number of complex diseases. Pathway-based approaches using genotypic data provide tangible leads which cannot be identified by single marker approaches as implemented in GWAS. The available pathway analysis approaches mainly differ in the employed databases and in the applied statistics for determining the significance of the associated disease markers.So far, pathway-based approaches using GWAS data failed to consider the overlapping of genes among different pathways or the influence of protein–interactions. We performed a multistage integrative pathway (MIP) analysis on three common diseases - Crohn''s disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) - incorporating genotypic, pathway, protein- and domain-interaction data to identify novel associations between these diseases and pathways. Additionally, we assessed the sensitivity of our method by studying the influence of the most significant SNPs on the pathway analysis by removing those and comparing the corresponding pathway analysis results. Apart from confirming many previously published associations between pathways and RA, CD and T1D, our MIP approach was able to identify three new associations between disease phenotypes and pathways. This includes a relation between the influenza-A pathway and RA, as well as a relation between T1D and the phagosome and toxoplasmosis pathways. These results provide new leads to understand the molecular underpinnings of these diseases.The developed software herein used is available at http://www.cogsys.cs.uni-tuebingen.de/software/GWASPathwayIdentifier/index.htm.  相似文献   

15.
Variation in cystic fibrosis (CF) phenotypes, including lung disease severity, age of onset of persistent Pseudomonas aeruginosa (Paeruginosa) lung infection, and presence of meconium ileus (MI), has been partially explained by genome-wide association studies (GWASs). It is not expected that GWASs alone are sufficiently powered to uncover all heritable traits associated with CF phenotypic diversity. Therefore, we utilized gene expression association from lymphoblastoid cells lines from 754 p.Phe508del CF-affected homozygous individuals to identify genes and pathways. LPAR6, a G protein coupled receptor, associated with lung disease severity (false discovery rate q value = 0.0006). Additional pathway analyses, utilizing a stringent permutation-based approach, identified unique signals for all three phenotypes. Pathways associated with lung disease severity were annotated in three broad categories: (1) endomembrane function, containing p.Phe508del processing genes, providing evidence of the importance of p.Phe508del processing to explain lung phenotype variation; (2) HLA class I genes, extending previous GWAS findings in the HLA region; and (3) endoplasmic reticulum stress response genes. Expression pathways associated with lung disease were concordant for some endosome and HLA pathways, with pathways identified using GWAS associations from 1,978 CF-affected individuals. Pathways associated with age of onset of persistent P. aeruginosa infection were enriched for HLA class II genes, and those associated with MI were related to oxidative phosphorylation. Formal testing demonstrated that genes showing differential expression associated with lung disease severity were enriched for heritable genetic variation and expression quantitative traits. Gene expression provided a powerful tool to identify unrecognized heritable variation, complementing ongoing GWASs in this rare disease.  相似文献   

16.

Background

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, and it is affected by both environmental and genetic factors. Although the genetic component of PCOS is evident, studies aiming to identify susceptibility genes have shown controversial results. This study conducted a pathway-based analysis using a dataset obtained through a genome-wide association study (GWAS) to elucidate the biological pathways that contribute to PCOS susceptibility and the associated genes.

Methods

We used GWAS data on 636,797 autosomal single nucleotide polymorphisms (SNPs) from 1,221 individuals (432 PCOS patients and 789 controls) for analysis. A pathway analysis was conducted using meta-analysis gene-set enrichment of variant associations (MAGENTA). Top-ranking pathways or gene sets associated with PCOS were identified, and significant genes within the pathways were analyzed.

Results

The pathway analysis of the GWAS dataset identified significant pathways related to oocyte meiosis and the regulation of insulin secretion by acetylcholine and free fatty acids (all nominal gene-set enrichment analysis (GSEA) P-values < 0.05). In addition, INS, GNAQ, STXBP1, PLCB3, PLCB2, SMC3 and PLCZ1 were significant genes observed within the biological pathways (all gene P-values < 0.05).

Conclusions

By applying MAGENTA pathway analysis to PCOS GWAS data, we identified significant pathways and candidate genes involved in PCOS. Our findings may provide new leads for understanding the mechanisms underlying the development of PCOS.  相似文献   

17.
Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H2O2 release), which is the joint effect of reactive oxygen species (ROS) production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H2O2 release in lymphoblastoid cell lines (LCL) in a family-based 3-generation cohort (CEPH-HapMap), and in 3 population-based cohorts (KORA, GenCord, HapMap). Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS) for the combined KORA-GenCord cohorts (n = 279) using enhanced marker resolution by imputation (>1.4 million SNPs). We found 5 significant associations (p<5.00×10−8) and 54 suggestive associations (p<1.00×10−5), one of which confirmed the linked region on Hsa15. To replicate our findings, we performed GWAS using 58 HapMap individuals and ∼2.1 million SNPs. We identified 40 genome-wide significant and 302 suggestive SNPs, and confirmed genome signals on Hsa1, Hsa12, and Hsa15. Genetic loci within 900 kb from the known candidate gene p67phox on Hsa1 were identified in GWAS in both cohorts. We did not find replication of SNPs across all cohorts, but replication within the same genomic region. Finally, a highly significant decrease in H2O2 release was observed in Down Syndrome (DS) individuals (p<2.88×10−12). Taken together, our results show strong evidence of genetic control of H2O2 in LCL of healthy and DS cohorts and suggest that cellular phenotypes, which themselves are also complex, may be used as proxies for dissection of complex disorders.  相似文献   

18.
Braun R  Buetow K 《PLoS genetics》2011,7(6):e1002101
Genome-wide association studies (GWAS) have become increasingly common due to advances in technology and have permitted the identification of differences in single nucleotide polymorphism (SNP) alleles that are associated with diseases. However, while typical GWAS analysis techniques treat markers individually, complex diseases (cancers, diabetes, and Alzheimers, amongst others) are unlikely to have a single causative gene. Thus, there is a pressing need for multi-SNP analysis methods that can reveal system-level differences in cases and controls. Here, we present a novel multi-SNP GWAS analysis method called Pathways of Distinction Analysis (PoDA). The method uses GWAS data and known pathway-gene and gene-SNP associations to identify pathways that permit, ideally, the distinction of cases from controls. The technique is based upon the hypothesis that, if a pathway is related to disease risk, cases will appear more similar to other cases than to controls (or vice versa) for the SNPs associated with that pathway. By systematically applying the method to all pathways of potential interest, we can identify those for which the hypothesis holds true, i.e., pathways containing SNPs for which the samples exhibit greater within-class similarity than across classes. Importantly, PoDA improves on existing single-SNP and SNP-set enrichment analyses, in that it does not require the SNPs in a pathway to exhibit independent main effects. This permits PoDA to reveal pathways in which epistatic interactions drive risk. In this paper, we detail the PoDA method and apply it to two GWAS: one of breast cancer and the other of liver cancer. The results obtained strongly suggest that there exist pathway-wide genomic differences that contribute to disease susceptibility. PoDA thus provides an analytical tool that is complementary to existing techniques and has the power to enrich our understanding of disease genomics at the systems-level.  相似文献   

19.
Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways.  相似文献   

20.
Genome-wide association studies (GWAS) with hundreds of żthousands of single nucleotide polymorphisms (SNPs) are popular strategies to reveal the genetic basis of human complex diseases. Despite many successes of GWAS, it is well recognized that new analytical approaches have to be integrated to achieve their full potential. Starting with a list of SNPs, found to be associated with disease in GWAS, here we propose a novel methodology to devise functionally important KEGG pathways through the identification of genes within these pathways, where these genes are obtained from SNP analysis. Our methodology is based on functionalization of important SNPs to identify effected genes and disease related pathways. We have tested our methodology on WTCCC Rheumatoid Arthritis (RA) dataset and identified: i) previously known RA related KEGG pathways (e.g., Toll-like receptor signaling, Jak-STAT signaling, Antigen processing, Leukocyte transendothelial migration and MAPK signaling pathways); ii) additional KEGG pathways (e.g., Pathways in cancer, Neurotrophin signaling, Chemokine signaling pathways) as associated with RA. Furthermore, these newly found pathways included genes which are targets of RA-specific drugs. Even though GWAS analysis identifies 14 out of 83 of those drug target genes; newly found functionally important KEGG pathways led to the discovery of 25 out of 83 genes, known to be used as drug targets for the treatment of RA. Among the previously known pathways, we identified additional genes associated with RA (e.g. Antigen processing and presentation, Tight junction). Importantly, within these pathways, the associations between some of these additionally found genes, such as HLA-C, HLA-G, PRKCQ, PRKCZ, TAP1, TAP2 and RA were verified by either OMIM database or by literature retrieved from the NCBI PubMed module. With the whole-genome sequencing on the horizon, we show that the full potential of GWAS can be achieved by integrating pathway and network-oriented analysis and prior knowledge from functional properties of a SNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号