首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
成骨不全作为罕见性遗传性结缔组织疾病,具有临床异质性与遗传异质性,迄今已经分为15个亚型.有常染色体显性遗传与常染色体隐性遗传两种遗传方式.常染色体显性遗传以Ⅰ型胶原蛋白结构基因COL1A1、COL1A2突变为主.非Ⅰ型胶原蛋白突变的常染色体隐性遗传的成骨不全患者数量少,但致病基因种类多,涉及到胶原合成后异常修饰,胶原蛋白分子伴侣及羧基端前肽剪切酶缺陷、成骨细胞与破骨细胞分化及转录因子异常、钙离子通道与Wnt信号通路分子等诸多方面.致病基因及其机制的研究,对于成骨不全的基因确诊及个体化药物治疗意义重大.  相似文献   

2.
遗传性肾炎(hereditary nephritis,HN)是一组与遗传有关,主要累及肾小球的肾脏疾病,常伴有其它器官的损伤.HN呈家族聚集性,可表现为常染色体显性遗传、常染色体隐性遗传和X连锁遗传,有些家系还表现为非孟德尔遗传和线粒体遗传.对HN主要疾病的临床表型、遗传学和动物模型的总结和对HN疾病的深入研究有可能找到疾病的致病突变,以及更好地了解疾病的分子机制.  相似文献   

3.
腓骨肌萎缩症(Charcot-Marie-Tooth disease, CMT)是一种最常见的遗传性周围神经病,虽然常以腓骨肌萎缩和肢端骨骼畸形、运动与感觉障碍等为主要临床表现,但先天致病基因和后天影响因素的不同使该病具有高度的临床和遗传异质性;而对CMT类型的精细分类,更多是依据不同致病基因及其突变。随着近几年二代测序为代表的高通量测序技术的不断发展,已经确定了100多个CMT的致病基因和更多的新突变。本文主要阐述了CMT的遗传分型和临床特征,特别是四种常见CMT亚型的致病基因在神经细胞内参与的信号转导通路、CMT电生理和分子病理特征,以及CMT基因突变检测方法,以期为罕见病CMT的基础研究与临床诊断提供参考。  相似文献   

4.
一成骨不全家系的COL1A1基因突变检测   总被引:7,自引:0,他引:7  
成骨不全(Osteogenesisimperfecta,OI)是一种由于Ⅰ型胶原形成障碍,导致骨脆性增强为主要症状的 常染色体显性遗传性疾病。临床上主要表现为骨质脆弱、蓝巩膜、耳聋和中等程度的关节畸形等症状。成骨不全 基因分别定位于17q21.31 q22和7q22.1,其致病基因分别为COL1A1和COL1A2。对一常染色体显性遗传的 成骨不全家系进行连锁分析,在COL1A1遗传位点发现紧密连锁(LOD=9.31;θ=.00)。突变检测发现在 COL1A1基因第26内含子5′端剪接位点处存在一由GT转换为AT的致病突变,该突变引起的异常剪接是导致成 骨不全的致病原因之一。  相似文献   

5.
成骨不全(Osteogenesis imperfecta,OI)是一种由于Ⅰ型胶原形成障碍,导致骨脆性增强为主要症状的常染色体显性遗传性疾病。临床上主要表现为骨质脆弱、蓝巩膜、耳聋和中等程度的关节畸形等症状。成骨不全基因分别定位于17q21.31-q22和7q22.1,其致病基因分别为COL1A1和COL1A2。对一常染色体显性遗传的成骨不全家系进行连锁分析,在COL1A1遗传位点发现紧密连锁(LOD=9.31;θ=.00)。突变检测发现在COL1A1基因第26内含子5′端剪接位点处存在一由GT转换为AT的致病突变,该突变引起的异常剪接是导致成骨不全的致病原因之一。  相似文献   

6.
非综合征性耳聋(nonsyndromic hearing impairment, NSHI)是一种十分常见的人类神经系统疾病, 约有1/1000的新生儿患有语前聋。GJB2基因编码间隙连接蛋白Cx26, 是最常见的NSHI致病基因, 大约50%的常染色体隐性遗传NSHI是由GJB2基因突变引起的。在本研究中, 收集了江苏省一个复杂的非综合征性耳聋家系, 并对其进行了分子遗传学研究。对所有已知常染色体隐性遗传的NSHI致病基因, 选用其侧翼的微卫星标记进行连锁分析, 发现该家系的致病基因与D13S175连锁。对GJB2基因进行整个编码区域的测序, 发现235碱基处发生了碱基C的纯合缺失, 这一突变可能是该家系中绝大多数患者致病的遗传基础。  相似文献   

7.
目的揭示白毛黑眼兔黑眼性状的遗传模式。方法选取具有黑眼突变性状的白毛黑眼兔与其背景品系日本大耳白兔进行杂交,构建6个两代杂交家系。对杂交产生的F1代和F2代个体虹膜颜色性状的观察和统计,并应用遗传数理统计方法中常用的分离分析进行遗传模式探讨。结果χ2检验显示,杂交实验所得虹膜颜色分布的观察值与常染色体单基因显性遗传模式的期望值差异无显著性(P0.05),与常染色体隐性遗传及伴性遗传模式的期望值差异有显著性(P0.05)。结论白毛黑眼兔的黑眼突变是由常染色体上单个基因的变异造成的显性性状。  相似文献   

8.
系谱是指在调查某种遗传病患者家族成员的发病情况后,按一定形式绘成的图解。(?)根据致病基因所在的染色体种类不同,可以分为下列几种情况:常染色体遗传显性遗传隐性遗传性染色体遗传显性遗传隐性遗传无论何种遗传病都有自己的特点,根据这些特点可以判断出某种遗传病的遗传方式。  相似文献   

9.
病理性近视的家系研究   总被引:1,自引:0,他引:1  
为了探讨我国病理性近视的遗传模式,对90个病理性近视大家系进行了分离分析。简单分离分析采用先验法和SEGRAN-B软件,进行拟合优度卡方检验,比较实际分离比与理论分离比的符合程度;复合分离分析运用SAGE-REGD软件进行孟德尔遗传模型(主基因、显性、隐性、共显性)和非孟德尔遗传模型(非传递、环境、一般)的拟合。结果显示,婚配类型为A*N的家系符合常染色体显性遗传,散发概率为13.8%,婚配类型为N*N的家系符合常染色体隐性遗传,散发概率为16.3%,但常染色体显性遗传不能除外,复合分离分析接受孟德尔遗传的显性、隐性、共显性和主基因模型,共显性模型的可能性最大,基因频率为0.21442999。因此,我国病理性近视存在常染色体显性和隐性遗传模式,并有一定比例的散发病例,具有遗传异质性。  相似文献   

10.
家族性腺瘤息肉病(FAP)是第二常见的遗传性结直肠癌综合征,多在青春期发病,发病率约1/10000,主要临床表现为大肠中多发的腺瘤性息肉,是一种结直肠癌的癌前病变,如果不予治疗,几乎100%的患者会发展成为结直肠癌。一直以来,FAP被认为是一种常染色体显性遗传疾病,发病由APC基因胚系突变引起。根据临床特点的不同,FAP患者可以分为经典型FAP(CFAP)和轻表型FAP(AFAP)。然而近年来,在一些无APC基因胚系突变的FAP患者中发现了Mut YH基因的双等位基因突变。这种由于Mut YH基因双等位基因突变而无APC生殖突变所引起的临床综合征定义为Mut YH基因相关性息肉病[2](MAP)。MAP为常染色体隐性遗传,是一种特殊类型的FAP。另外,很多研究表明,APC基因的突变位点与结肠腺瘤病的严重程度、癌变的风险程度和某些肠外表现相关。MAP的发现和对FAP基因型-表型相关性的研究,完善了对FAP遗传病因学的认识,对于FAP患者及高危亲属的合理防治和预后具有重要的意义。  相似文献   

11.
Autosomal recessive forms of Charcot–Marie–Tooth disease (CMT) account for less than 10 % of all CMT cases, but are more frequent in the populations with a high rate of consanguinity. Roma (Gypsies) are a transnational minority with an estimated population of 10 to 14 million, in which a high degree of consanguineous marriages is a generally known fact. Similar to the other genetically isolated founder populations, the Roma harbour a number of unique or rare autosomal recessive disorders, caused by “private” founder mutations. There are three subtypes of autosomal recessive CMT with mutations private to the Roma population: CMT4C, CMT4D and CMT4G. We report on the molecular examination of four families of Roma origin in Slovakia with early-onset demyelinating neuropathy and autosomal recessive inheritance. We detected mutation p.R148X (g.631C>T) in the NDRG1 (NM_006096.3) gene in two families and mutation g.9712G>C in the HK1 (NM_033498) gene in the other two families. These mutations cause CMT4D and CMT4G, respectively. The success of molecular genetic analysis in all families confirms that autosomal recessive forms of CMT caused by mutations on the NDRG1 and HK1 genes are common causes of inherited neuropathies among Slovak Roma. Providing genetic analysis of these genes for patients with Roma origin as a common part of diagnostic procedure would contribute to a better rate of diagnosed cases of demyelinating neuropathy in Slovakia and in other countries with a Roma minority.  相似文献   

12.
The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes---NF-L and KIF1Bbeta---have been identified to date. Homozygosity mapping in inbred Algerian families with autosomal recessive CMT2 (AR-CMT2) provided evidence of linkage to chromosome 1q21.2-q21.3 in two families (Zmax=4.14). All patients shared a common homozygous ancestral haplotype that was suggestive of a founder mutation as the cause of the phenotype. A unique homozygous mutation in LMNA (which encodes lamin A/C, a component of the nuclear envelope) was identified in all affected members and in additional patients with CMT2 from a third, unrelated family. Ultrastructural exploration of sciatic nerves of LMNA null (i.e., -/-) mice was performed and revealed a strong reduction of axon density, axonal enlargement, and the presence of nonmyelinated axons, all of which were highly similar to the phenotypes of human peripheral axonopathies. The finding of site-specific amino acid substitutions in limb-girdle muscular dystrophy type 1B, autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy type 1A, autosomal dominant partial lipodystrophy, and, now, AR-CMT2 suggests the existence of distinct functional domains in lamin A/C that are essential for the maintenance and integrity of different cell lineages. To our knowledge, this report constitutes the first evidence of the recessive inheritance of a mutation that causes CMT2; additionally, we suggest that mutations in LMNA may also be the cause of the genetically overlapping disorder CMT2B1.  相似文献   

13.
Charcot-Marie-Tooth (CMT) is the generic name given to a group of genetic disorders characterized by a relatively isolated dysfunction of peripheral nerves, with combined motor and sensory impairment. These CMT syndromes are the most frequent genetically-determined peripheral neuropathies, with a global prevalence between 4.7 and 36/100,000. Their clinical phenotype is predominantly motor, with a grossly symmetrical distal amyotrophy involving both lower and upper limbs. Mode of inheritance is variable: autosomal dominant, autosomal recessive or X-linked. Apparently sporadic forms can be a difficult diagnosis and they must be considered in all patients with a chronic polyneuropathy which is not clearly of acquired origin. During the last two decades, the identification of more than 25 genes mutated in CMT syndromes has complicated the classification of these disorders. Knowledge of the function of some of these genes has improved our understanding of the pathogenesis of myelinic or axonal dysfunction in CMT, but for some others their function remains elusive or unknown.  相似文献   

14.
Elmas  M.  Yıldız  H.  Erdoğan  M.  Gogus  B.  Avcı  K.  Solak  M. 《Molecular biology reports》2019,46(1):287-299

Whole-exome sequencing (WES) is an ideal method for the diagnosis of autosomal recessive diseases. The aim of this study was to evaluate the diagnostic power of WES in patients with autosomal recessive inheritance and to determine the relationship between genotype and phenotype. Retrospective screenings of 24 patients analysed with WES were performed and clinical and genetic data were evaluated. Any pathogenic mutation that could explain the suspected disease in 4 patients was not identified. A homozygous pathogenic mutation was detected in 18 patients. 2 patients had heterozygous mutations. According to this study results, WES is a successful technique to be used at the stage of diagnosis in patients who are accompanied by various degrees of intellectual disability matching the inheritance of the autosomal recessive.

  相似文献   

15.
The analysis of the spectrum of hereditary diseases in the population of the Krasnodar province is performed and the influence of the population dynamics factors on the spectrum is discussed. More than 130 nosological forms were discovered in the population of approx. 200,000. Among these, there are 63 autosomal dominant, 49 autosomal recessive and 17 X-linked recessive forms. Of the most frequent autosomal dominant diseases (more than 1 per 50,000) autosomal recessive and X-linked recessive disorders 13, 7 and 7 forms, respectively, were picked up. The coefficient of diversity of hereditary diseases (the number of nosological forms per 10 inhabitants) with different types of inheritance is higher in the Krasnodar population, as compared with the Kostroma population. The problem of similarity of the "nucleus" of autosomal-recessive disorders in Russian populations is discussed.  相似文献   

16.
Autosomal recessive and dominant inheritance of proximal spinal muscular atrophy (SMA) are well documented. Several genetic studies found a significant deviation from the assumption of recessive inheritance in SMA, with affected children in one generation. The existence of new autosomal dominant mutations has been assumed as the most suitable explantation, which is supported by three observations of this study: (1) The segregation ratio calculated in 333 families showed a significant deviation from autosomal recessive inheritance in the milder forms of SMA (P = .09 +/- .06 for onset at 10-36 mo and .13 +/- .07 for onset at > 36 mo; and P = .09 +/- .07 for SMA IIIa and .12 +/- .07 for SMA IIIb). (2) Three families with affected subjects in two generations are reported, in whom the disease could have started as an autosomal dominant mutation. (3) Linkage studies with chromosome 5q markers showed that in 5 (5.4%) of 93 informative families the patient shared identical haplotypes with at least one healthy sib. Other mechanisms, such as the existence of phenocopies, pseudodominance, or a second autosomal recessive gene locus, cannot be excluded in single families. The postulation of spontaneous mutations, however, is a suitable explanation for all three observations. Estimated risk figures for genetic counseling are given.  相似文献   

17.
Non-syndromic trigonocephaly is a heterogeneous entity; in most cases the origin is unknown. Rare cases with autosomal dominant and recessive inheritance exist. Here the mutational screening of ten patients in the FGFR1, 2, and 3 genes and the TWIST gene causative of autosomal dominant craniosynostosis syndromes was reported. In one girl an unusual FGFR1 mutation was found.  相似文献   

18.
Charcot-Marie-Tooth disease (CMT) with autosomal recessive (AR) inheritance is a heterogeneous group of inherited motor and sensory neuropathies. In some families from Japan and Brazil, a demyelinating CMT, mainly characterized by the presence of myelin outfoldings on nerve biopsies, cosegregated as an autosomal recessive trait with early-onset glaucoma. We identified two such large consanguineous families from Tunisia and Morocco with ages at onset ranging from 2 to 15 years. We mapped this syndrome to chromosome 11p15, in a 4.6-cM region overlapping the locus for an isolated demyelinating ARCMT (CMT4B2). In these two families, we identified two different nonsense mutations in the myotubularin-related 13 gene, MTMR13. The MTMR protein family includes proteins with a phosphoinositide phosphatase activity, as well as proteins in which key catalytic residues are missing and that are thus called "pseudophosphatases." MTM1, the first identified member of this family, and MTMR2 are responsible for X-linked myotubular myopathy and Charcot-Marie-Tooth disease type 4B1, an isolated peripheral neuropathy with myelin outfoldings, respectively. Both encode active phosphatases. It is striking to note that mutations in MTMR13 also cause peripheral neuropathy with myelin outfoldings, although it belongs to a pseudophosphatase subgroup, since its closest homologue is MTMR5/Sbf1. This is the first human disease caused by mutation in a pseudophosphatase, emphasizing the important function of these putatively inactive enzymes. MTMR13 may be important for the development of both the peripheral nerves and the trabeculum meshwork, which permits the outflow of the aqueous humor. Both of these tissues have the same embryonic origin.  相似文献   

19.
Charcot-Marie-Tooth disease (CMT) is the most common inherited motor and sensory neuropathy. The neuronal form of this disorder is referred to as Charcot-Marie-Tooth type II disease (CMT2). CMT2 is usually inherited as an autosomal dominant trait with a variable age at onset of symptoms associated with progressive axonal neuropathy. In some families, the locus that predisposes to CMT2 has been demonstrated to map to the distal portion of the short arm of chromosome 1. Other families with CMT2 do not show linkage with 1p markers, suggesting genetic heterogeneity in CMT2. We investigated linkage in a single large kindred with autosomal dominant CMT2. The gene responsible for CMT2 in this kindred (CMT2B) was mapped to the interval between the microsatellite markers D3S1769 and D3S1744 in the 3q13-22 region. Study of additional CMT2 kindreds should serve to further refine the disease gene region and may ultimately lead to the identification of a gene defect that underlies the CMT2 phenotype.  相似文献   

20.
Bardet-Biedl syndrome (BBS) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. Patients with BBS are also at increased risk for diabetes mellitus, hypertension, and congenital heart disease. BBS is known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13-p12 (BBS3), 15q22.3-q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although these loci were all mapped on the basis of an autosomal recessive mode of inheritance, it has recently been suggested-on the basis of mutation analysis of the identified BBS2, BBS4, and BBS6 genes-that BBS displays a complex mode of inheritance in which, in some families, three mutations at two loci are necessary to manifest the disease phenotype. We recently identified BBS1, the gene most commonly involved in Bardet-Biedl syndrome. The identification of this gene allows for further evaluation of complex inheritance. In the present study we evaluate the involvement of the BBS1 gene in a cohort of 129 probands with BBS and report 10 novel BBS1 mutations. We demonstrate that a common BBS1 missense mutation accounts for approximately 80% of all BBS1 mutations and is found on a similar genetic background across populations. We show that the BBS1 gene is highly conserved between mice and humans. Finally, we demonstrate that BBS1 is inherited in an autosomal recessive manner and is rarely, if ever, involved in complex inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号