首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
It has been postulated that the aberrant projection of sympathetic axons to individual primary sensory neurons may provide the morphological basis for pain-related behaviors in rat models of chronic pain syndrome. Since nerve growth factor (NGF) can elicit the collateral sprouting of noradrenergic sympathetic terminals, it might be predicted that NGF plays a role in mediating the sprouting of sympathetic axons into sensory ganglia. Using a line of transgenic mice overexpressing NGF among glial cells, it was first found that trigeminal ganglia from adult transgenic mice possessed significantly higher levels of NGF protein in comparison to age-matched wild-type mice; as well, detectable levels of NGF mRNA transgene expression were present in both the ganglia and brain stem. Within the trigeminal ganglia, a small proportion of the sensory neuronal population stained immunohistochemically for NGF; a higher percentage of NGF-positive neurons was evident in transgenic mice. New sympathetic axons extended into the trigeminal ganglia of transgenic mice only and formed perineuronal plexuses surrounding only those neurons immunostained for NGF. In addition, such plexuses were accompanied by glial processes from nonmyelinating Schwann cells. From these data, we propose that accumulation of glial-derived NGF by adult sensory neurons and its putative release into the ganglionic environment induce the directional growth of sympathetic axons to the source of NGF, namely, the cell bodies of primary sensory neurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 347–360, 1998  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Beta-nerve growth factor (NGF) is a protein necessary for the survival and maintenance of sympathetic and sensory neurons that appears to be produced by the target tissues of these neurons in vivo. Both denervation and the culture of explants of one model target, the rat iris, leads to an increase in the NGF content, suggesting that innervating neurons may regulate a step in synthesis or turnover of NGF. To determine whether there is a change in synthesis controlled at the mRNA level, the rat iris has been assayed for its content of NGF mRNA after surgical and chemical denervation and after explant into culture. Using a sensitive blot hybridization assay, a large, rapid increase in the content of NGF mRNA was observed upon explant of the rat iris. The increase was readily detectable within 1 h, reached a maximum increase of 10- to 20-fold by 6 to 12 h, and was still evident after 3 d in culture. The distribution of NGF mRNA in different areas of the iris does not change during this time. This rapid increase in NGF mRNA is also seen in the fully innervated iris in vivo after trauma to the anterior chamber. In contrast, denervation to varying degrees in situ had no effect on NGF mRNA levels. Neither removal of sympathetic innervation by surgical or chemical methods nor combined surgical removal of sympathetic and sensory innervation detectably altered NGF mRNA content. Thus, denervation of the rat iris in situ does not cause the observed accumulation of NGF by increasing the level of NGF mRNA, and the increase in NGF content must be due to other factors.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号