首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Austad SN 《Aging cell》2004,3(5):249-251
Development and morphogenesis may easily be thought of as programed, in the sense that they result from a sequence of cellular and molecular events designed by natural selection to produce a given adult phenotype. Aging, except in exceptional cases such as the rapid decay and death of Pacific salmon, is not design but decay. The decay of senescence is not due to natural selection's designing hand, but to its absence. The empirical difference between programed and nonprogramed senescence becomes evident when comparing the stereotypical steps leading to death in salmon contrasted with the lack of such stereotypy in most organisms such as humans and mice. Understanding the distinction between programed development and nonprogramed senescence helps focus attention on the phenotypic performance of adults, which is the focus of natural selection, and therefore be attentive to any unwanted pleiotropic side-effects of genetic or environmental treatments which retard aging.  相似文献   

2.
A fundamental issue in quantitative trait locus (QTL) mapping is to determine the plausibility of the presence of a QTL at a given genome location. Bayesian analysis offers an attractive way of testing alternative models (here, QTL vs. no-QTL) via the Bayes factor. There have been several numerical approaches to computing the Bayes factor, mostly based on Markov Chain Monte Carlo (MCMC), but these strategies are subject to numerical or stability problems. We propose a simple and stable approach to calculating the Bayes factor between nested models. The procedure is based on a reparameterization of a variance component model in terms of intra-class correlation. The Bayes factor can then be easily calculated from the output of a MCMC scheme by averaging conditional densities at the null intra-class correlation. We studied the performance of the method using simulation. We applied this approach to QTL analysis in an outbred population. We also compared it with the Likelihood Ratio Test and we analyzed its stability. Simulation results were very similar to the simulated parameters. The posterior probability of the QTL model increases as the QTL effect does. The location of the QTL was also correctly obtained. The use of meta-analysis is suggested from the properties of the Bayes factor.  相似文献   

3.
The antagonistic pleiotropy (AP) theory of ageing predicts genetically based trade-offs between investment in reproduction in early life and survival and performance in later life. Laboratory-based research has shown that such genetic trade-offs exist, but little is currently known about their prevalence in natural populations. We used random regression 'animal model' techniques to test the genetic basis of trade-offs between early-life fecundity (ELF) and maternal performance in late life in a wild population of red deer (Cervus elaphus) on the Isle of Rum, Scotland. Significant genetic variation for both ageing rates in a key maternal performance measure (offspring birth weight) and ELF was present in this population. We found some evidence for a negative genetic covariance between the rate of ageing in offspring birth weight and ELF, and also for a negative environmental covariance. Our results suggest rare support for the AP theory of ageing from a wild population.  相似文献   

4.
    
Abstract A publication by Shanley and Kirkwood (2000) attempts to explain data on caloric restriction (CR) and life extension in the context of the Disposable Soma (DS) theory for the evolution of senescence. As the authors concede, this juxtaposition appears at first to offend intuition: According to the DS theory, senescence is the result of a tight budget for caloric energy, such that repair and maintenance functions are shortchanged; yet, in CR experiments, it is found that longevity decreases smoothly as the total caloric budget is increased. In the Shanley-Kirkwood model, an optimized allocation of resources causes energy to be diverted away from somatic maintenance at a greater rate than caloric intake increases, with the net result that more total energy is associated with less energy available for maintenance. In the present critique, the limitations of this model are detailed and its special assumptions reviewed. While the CR experiments find comparable life extension for males and females, measured relative to nonbreeding controls, the Shanley-Kirkwood model draws its energy budget from data on breeding females. In addition, the success in reproducing the observed relationship between feeding and longevity depends crucially on a mathematical relationship between food availability and the probability of reproductive success which may be difficult to justify.  相似文献   

5.
Age-specific mortality rates level off far below 100% at advanced ages in experimental populations of Drosophila melanogaster and other organisms. This observation is inconsistent with the equilibrium predictions of both the antagonistic pleiotropy and mutation accumulation models of senescence, which, under a wide variety of assumptions, predict a “wall” of mortality rates near 100% at postreproductive ages. Previous models of age-specific mortality patterns are discussed in light of recent demographic data concerning late-age mortality deceleration and age-specific properties of new mutations. The most recent theory (Mueller and Rose 1996) argues that existing evolutionary models can easily and robustly explain the demographic data. Here we discuss the sensitivity of that analysis to different types of mutational effects, and demonstrate that its conclusion is very sensitive to assumptions about mutations. A legitimate resolution of evolutionary theory and demographic data will require experimental observations on the age-specificity of mutational effects for new mutations and the degree to which mortality rates in adjacent ages are constrained to be similar (positive pleiotropy), as well as consideration of redundancy and heterogeneity models from demographic theory.  相似文献   

6.
    
Thermal‐stress selection can affect multiple fitness components including mating success. Reproductive success is one of the most inclusive measures of overall fitness, and mating success is a major component of reproduction. However, almost no attention has been spent to test how mating success can be affected by thermal‐stress selection. In this study, we examine the mating success in the cactophilic Drosophila buzzatii Patterson & Wheeler (Diptera: Drosophilidae) derived from two natural populations that nearly represent the ends of an altitudinal cline for heat knock‐down resistance. Furthermore, we extended the analysis using laboratory lines artificially selected for high and low heat knock‐down resistance. Mating success at high temperature was found to be higher in the lowland than the highland population after a heat pre‐treatment. Moreover, individuals selected for heat knock‐down resistance showed higher mating success at high temperature than did individuals selected for low knock‐down resistance. These results indicate that adaptation to thermal stress can confer an advantage on fitness‐related traits including mating success and highlight the benefits of earlier heat exposure as an adaptive plastic response affecting mating success under stress of higher temperature.  相似文献   

7.
    
The evolutionary theory of senescence posits that as the probability of extrinsic mortality increases with age, selection should favour early‐life over late‐life reproduction. Studies on natural vertebrate populations show early reproduction may impair later‐life performance, but the consequences for lifetime fitness have rarely been determined, and little is known of whether similar patterns apply to mammals which typically live for several decades. We used a longitudinal dataset on Asian elephants (Elephas maximus) to investigate associations between early‐life reproduction and female age‐specific survival, fecundity and offspring survival to independence, as well as lifetime breeding success (lifetime number of calves produced). Females showed low fecundity following sexual maturity, followed by a rapid increase to a peak at age 19 and a subsequent decline. High early life reproductive output (before the peak of performance) was positively associated with subsequent age‐specific fecundity and offspring survival, but significantly impaired a female's own later‐life survival. Despite the negative effects of early reproduction on late‐life survival, early reproduction is under positive selection through a positive association with lifetime breeding success. Our results suggest a trade‐off between early reproduction and later survival which is maintained by strong selection for high early fecundity, and thus support the prediction from life history theory that high investment in reproductive success in early life is favoured by selection through lifetime fitness despite costs to later‐life survival. That maternal survival in elephants depends on previous reproductive investment also has implications for the success of (semi‐)captive breeding programmes of this endangered species.  相似文献   

8.
A commonly encountered difficulty with the genetic engineering of crop plants is that different varieties of a particular species can show great variability in the efficiency with which they can be transformed. This increases the effort required to introduce transgenes into particular genetic backgrounds. The use of Substitution Lines has allowed the finer mapping of three Quantitative Trait Loci (tf1, tf2 and tf3) that explain 26% of the variation in the efficiency of Agrobacterium-mediated transformation in Brassica oleracea. Use of an 'orthogonal set' of genotypes (containing all eight possible combinations of 'positive' and 'negative' alleles at the three QTL), along with time course studies of transgene expression, has allowed the determination of the stages at which these genes have their effects during transformation. With regard to control of the level of transient transgene expression, tf1 (on LGO1) alone has no detectable effect, whilst tf2 (on LGO3) and tf3 (on LGO7) have highly significant effects (P < 0.001). All three loci have highly significant (P < 0.001) effects on the levels of expression of stably integrated transgene. The use of RFLP markers has shown that tf1 and tf2 are in duplicated regions of the B. oleracea genome and appear to be paralogous in origin. Colinearity of these regions with the A. thaliana genome has been identified. The results allow the selection of progeny Brassica oleracea genotypes that are more efficiently transformed than either parent used in the original cross.  相似文献   

9.
Natural populations host a wealth of genetic variation in longevity and age-specific schedules of reproduction. This variation provides critical information for inferring the evolutionary origin of senescence. Patterns of mutational effects on age-specific fecundity and survival provide additional insight to distinguish alternative models of senescence. In this study,P-elements bearing thewhite minigene were inserted at random into a common genetic background, generating lines ofD. melanogaster with single, stable transposon inserts. A series of 48 single-P-element lines revealed statistically significant heterogeneity in both longevity and fecundity. Longevity and early fecundity were only weakly positively correlated (r=0.286,P=0.0398). Both the pooled sample and 30 of the individual lines exhibited a leveling of age-specific mortality at advanced ages, in opposition to the classical demographic models. To the extent that these mutational effects are representative of naturally-occurring mutations in heterogeneous populations, this result presents a problem for the evolutionary theory of senescence. Natural selection is inefficient at removing deleterious mutations that are expressed only at late ages, and selection may not differentiate between mutations whose effects on longevity are post-reproductive. A leveling of the mortality rate would also be seen if mutations whose expression is delayed until very late simply do not occur. A simulation of mutation-selection balance among the 48P-element tagged lines shows that the mean longevity declines monotonically with increasing mutation rate, consistent with the mutation-accumulation model.  相似文献   

10.
  总被引:2,自引:0,他引:2  
We examined the relationship between number of offspring produced to a certain age and subsequent longevity in captive zoo populations of 18 species of mammal and 12 species of bird. The age cut-offs in each analysis were set to include 50%, 75% and 90% of the offspring produced in each of the population samples. Only one of 68 regressions was significant, and its slope was positive. In addition, we examined the relationship between age at first reproduction up to a certain age and longevity after that age, generally 5 years (3–8), among 17 species of mammal and 12 species of bird. Only one of these regressions had a significantly positive slope, indicating that early reproduction rarely reduces lifespan. Overall, we found no evidence that producing offspring in a zoo environment influences the age at death. Thus, although trade-offs might apply in natural populations under resource limitation, neither pregnancy, growth of the foetus and lactation in mammals, nor egg production in birds, reduces lifespan in the absence of such stress. If genetically based or other intrinsic antagonistic pleiotropy underlies the evolution of senescence, it was not evident in our analyses.  相似文献   

11.
Life history traits and stress tolerance were studied in four domestic species of DrosophilaD. melanogaster, D. simulans, D. auraria and D. immigrans– to understand how they adapt to their environments. In all species, larval weight approximately doubled in 1 day. The relative egg weight (egg weight : pupal weight) was smaller and the larval period was longer in D. immigrans than in the other three species. The pupal period was the longest in D. auraria. However, the adaptive significance of these differences in larval and pupal periods was not clear. The pupal case was generally thicker in the larger species, probably to support the larger pupal body. The start of oviposition was earliest and reproductive effort was greatest in female D. simulans, followed by female D. melanogaster. In contrast, starvation tolerance and the increase in bodyweight after eclosion was greater in D. immigrans and D. auraria than in the other two species. Pupal desiccation tolerance was greatest in D. melanogaster and lowest in D. auraria, and the less tolerant species seemed to select more humid sites for pupation. Adult tolerance to desiccation was greatest in D. melanogaster and lowest in D. simulans. In contrast, adult cold tolerance was greater in D. auraria and adult heat tolerance was lower in D. immigrans than in the other species. These differences in life history traits and stress tolerance represent the Drosophila species differential adaptations, and are assumed to allow coexistence of the species.  相似文献   

12.
    
Aging is associated with a decline of performance leading to reduced reproductive output and survival. While the antagonistic pleiotropy theory of aging has attracted considerable attention, the molecular/physiological functions underlying the early‐life benefits/late‐life costs paradigm remain elusive. We tested the hypothesis that while early activation of the inflammatory response confers benefits in terms of protection against infection, it also incurs costs in terms of reduced reproductive output at old age and shortened longevity. We infected mice with the malaria parasite Plasmodium yoelii and increased the inflammatory response using an anti‐IL‐10 receptor antibody treatment. We quantified the benefits and costs of the inflammatory response during the acute phase of the infection and at old age. In agreement with the antagonistic pleiotropy hypothesis, the inflammatory response provided an early‐life benefit, since infected mice that were treated with anti‐IL‐10 receptor antibodies had reduced parasite density and anemia. However, at old age, mice in all treatment groups had similar levels of C‐reactive protein, reproductive output, survival rate, and lifespan. Overall, our results do not support the hypothesis that the benefits of a robust response to malaria infection in early life incur longer term fitness costs.  相似文献   

13.
    
As organisms age, the effectiveness of natural selection weakens, leading to age‐related decline in fitness‐related traits. The evolution of age‐related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age‐related decline in fitness components is driven by age‐specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age‐related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress‐response fitness‐related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age‐related decline in stress tolerance. Our study demonstrates that the evolution of age‐related decline in stress tolerance is driven by a combination of alleles that have age‐specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP.  相似文献   

14.
Two genetic models exist to explain the evolution of ageing – mutation accumulation (MA) and antagonistic pleiotropy (AP). Under MA, a reduced intensity of selection with age results in accumulation of late‐acting deleterious mutations. Under AP, late‐acting deleterious mutations accumulate because they confer beneficial effects early in life. Recent studies suggest that the mitochondrial genome is a major player in ageing. It therefore seems plausible that the MA and AP models will be relevant to genomes within the cytoplasm. This possibility has not been considered previously. We explore whether patterns of covariation between fitness and ageing across 25 cytoplasmic lines, sampled from a population of Drosophila melanogaster, are consistent with the genetic associations predicted under MA or AP. We find negative covariation for fitness and the rate of ageing, and positive covariation for fitness and lifespan. Notably, the direction of these associations is opposite to that typically predicted under AP.  相似文献   

15.
It is generally accepted that the permanent arrest of cell division known as cellular senescence contributes to aging by an antagonistic pleiotropy mechanism: cellular senescence would act beneficially early in life by suppressing cancer, but detrimentally later on by causing frailty and, paradoxically, cancer. In this review, we show that there is room to rethink this common view. We propose a critical appraisal of the arguments commonly brought in support of it, and we qualitatively analyse published results that are of relevance to understand whether or not cellular senescence-associated genes really act in an antagonistic-pleiotropic manner in humans.  相似文献   

16.
How much do we know about the biology of aging from cell culture studies? Most normal somatic cells have a finite potential to divide due to a process termed cellular or replicative senescence. A growing body of evidence suggests that senescence evolved to protect higher eukaryotes, particularly mammals, from developing cancer. We now know that telomere shortening, due to the biochemistry of DNA replication, induces replicative senescence in human cells. However, in rodent cells, replicative senescence occurs despite very long telomeres. Recent findings suggest that replicative senescence is just the tip of the iceberg of a more general process termed cellular senescence. It appears that cellular senescence is a response to potentially oncogenic insults, including oxidative damage. In young organisms, growth arrest by cell senescence suppresses tumor development, but later in life, due to the accumulation of senescent cells which secret factors that can disrupt tissues during aging, cellular senescence promotes tumorigenesis. Therefore, antagonistic pleiotropy may explain in part, if not in whole, the apparently paradoxical effects of cellular senescence, though this still remains an open question.  相似文献   

17.
Resistance of soybean [Glycine max (L.) Merr.] to cyst nematode (SCN) (Heterodera glycines Ichinohe), one of the most destructive pathogens affecting soybean, involves a complex genetic system. The identification of QTLs associated with SCN resistance may contribute to the understanding of such system. The objective of this work was to identify and map QTLs for resistance to SCN Race 14 with the aid of molecular markers. BC3F2:3 and F2:3 populations, both derived from an original cross between resistant cv. Hartwig and the susceptible line BR-92–31983 were screened for resistance to SCN Race 14. Four microsatellite (Satt082, Sat_001, Satt574 and Satt301) and four RAPD markers (OPAA-11795, OPAE-08837, OPR-07548 and OPY-072030) were identified in the BC3F2:3 population using the bulked segregant analysis (BSA) technique. These markers were amplified in 183 F2:3 families and mapped to a locus that accounts for more than 40% of the resistance to SCN Race 14. Selection efficiency based on these markers was similar to that obtained with the conventional method. In the case of the microsalellite markers, which identify homozygous resistant genotypes, the efficiency was even higher. This new QTL has been mapped to the soybean linkage group D2 and, in conjunction with other QTLs already identified for SCN resistance, will certainly contribute to our understanding of the genetic basis of resistance of this important disease in soybean. Received: 12 October 1999 / Accepted: 14 April 2000  相似文献   

18.
Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing—the disposable soma and the antagonistic pleiotropy theories—and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns.  相似文献   

19.
    
Learning ability can be substantially improved by artificial selection in animals ranging from Drosophila to rats. Thus these species have not used their evolutionary potential with respect to learning ability, despite intuitively expected and experimentally demonstrated adaptive advantages of learning. This suggests that learning is costly, but this notion has rarely been tested. Here we report correlated responses of life-history traits to selection for improved learning in Drosophila melanogaster. Replicate populations selected for improved learning lived on average 15% shorter than the corresponding unselected control populations. They also showed a minor reduction in fecundity late in life and possibly a minor increase in dry adult mass. Selection for improved learning had no effect on egg-to-adult viability, development rate, or desiccation resistance. Because shortened longevity was the strongest correlated response to selection for improved learning, we also measured learning ability in another set of replicate populations that had been selected for extended longevity. In a classical olfactory conditioning assay, these long-lived flies showed an almost 40% reduction in learning ability early in life. This effect disappeared with age. Our results suggest a symmetrical evolutionary trade-off between learning ability and longevity in Drosophila.  相似文献   

20.
Thai jasmine rice, KDML 105, is known as the best quality rice.It is known not only for its aroma but also for its good cookingand eating qualities. Amylose content (AC), gel consistency(GC) and gelatinization temperature (GT) are important traitsdetermining rice quality. A population of recombinant inbredlines (RIL) derived from KDML105 x CT9993 cross was used tostudy the genetic control of AC, GC and GT traits. A total of191 markers were used in the linkage map construction. The 1605.3cM linkage map covering nearly the whole rice genome was usedfor QTL (define QTL) analysis. Four QTLs for AC were detectedon chromosomes 3, 4, 6 and 7. These QTLs accounted for 80% ofphenotypic variation explained (PVE) in AC. The presence ofone major gene as well as several modifiers was responsiblefor the expression of the trait. Two QTLs on chromosome 6 andone on chromosome 7 were detected for GC, which accounts for57% of PVE. A single gene of major effect along with modifiergenes controls GC from this cross. The QTLs in the vicinityof waxy locus were major contributors in the expression of ACand GC. The finding that the position of QTLs for AC and GCwere near each other may reflect tight linkage or pleiotropy.Three QTLs were detected, one on chromosome 2 and two on chromosome6, which accounted for 67% of PVE in GT. Just like AC and GC,one major gene and modifier genes governed the variation inGT resulting from the KDML105 x CT9993 cross. Breeding for cookingand eating qualities will largely rely on the preferences ofthe end users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号