共查询到20条相似文献,搜索用时 15 毫秒
1.
Rosario Hermoso Mercedes Castillo Ana Chueca Juan José Lázaro M. Sahrawy Julio López Gorgé 《Plant molecular biology》1996,30(3):455-465
When we compare the primary structures of the six chloroplast fructose-1,6-bisphosphatases (FBPase) so far sequenced, the existence of a poorly conserved fragment in the region just preceding the redox regulatory cysteines cluster can be observed. This region is a good candidate for binding of FBPase to its physiological modulator thioredoxin (Td), as this association shows clear differences between species. Using a cDNA clone for pea chloroplast FBPase as template, we have amplified by PCR a DNA insert coding for a 19 amino acid fragment (149Pro-167Gly), which was expressed in pGEMEX-1 as a fusion protein. This protein strongly interacts with pea Td m, as shown by ELISA and Superose 12 gel filtration, depending on pH of the medium. Preliminary assays have shown inhibition of FBPase activity in the presence of specific IgG against the 19 amino acid insert. Surprisingly the fusion protein enhances the FBPase activation in competitive inhibition experiments carried out with FBPase and Td. These results show the fundamental role played by this domain in FBPase-Td binding, not only as docking point for Td, but also by inducing some structural modification in the Td molecule. Taking as model the structural data recently published for spinach photosynthetic FBPase [29], this sequence from a tertiary and quaternary structural point of view appears available for rearrangement. 相似文献
2.
An important Calvin cycle enzyme, chloroplast fructose-1, 6-bisphosphatase (FBPase) from wheat, has been cloned and expressed up to 15% of the total cell protein using a pPLc expression vector in Escherichia coli by replacing the codons in the 5'-terminal encoding sequence with optimal and A/T-rich ones. The overexpressed wheat FBPase is soluble, fully active, and heat stable. It can be purified by chromatography in turn on DEAE-Sepharose and Sephacryl S-200, and around 15 mg of purified enzymes (>95%) is obtained from 1 liter of cultured bacteria. Its special activity is 8.8 u/mg, K(cat) is 22.9/S, K(m) is 121 microM, and V(max) is 128 micromol/min. mg. The recombinant FBPase can be activated by DTT, Na(+), or low concentrations of Li(+), Ca(2+), Zn(2+), GuHCl, and urea, while it can be inhibited by K(+) or NH(+)(4). 相似文献
3.
Takahisa Ogawa Ayako Kimura Harumi Sakuyama Takahiro Ishikawa Shigeru Shigeoka 《Bioscience, biotechnology, and biochemistry》2013,77(12):1957-1964
Euglena gracilis has the ability to accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. Under anaerobic conditions, E. gracilis cells degrade paramylon and synthesize wax esters. Cytosolic fructose-1,6-bisphosphatase (FBPase) appears to be a key enzyme in gluconeogenesis and position branch point of carbon partitioning between paramylon and wax ester biosynthesis. We herein identified and characterized cytosolic FBPase from E. gracilis. The Km and Vmax values of EgFBPaseIII were 16.5 ± 1.6 μM and 30.4 ± 7.2 μmol min?1 mg protein?1, respectively. The activity of EgFBPaseIII was not regulated by AMP or reversible redox modulation. No significant differences were observed in the production of paramylon in transiently suppressed EgFBPaseIII gene expression cells by RNAi (KD-EgFBPaseIII); nevertheless, FBPase activity was markedly decreased in KD-EgFBPaseIII cells. On the other hand, the growth of KD-EgFBPaseIII cells was slightly higher than that of control cells. 相似文献
4.
Thioredoxins: structure and function in plant cells 总被引:9,自引:1,他引:9
5.
6.
A. Rodriguez Andres J. J. Lazaro A. Chueca R. Hermoso J. Lopez Gorge 《Physiologia plantarum》1990,78(3):409-413
Aliphatic alcohols have a positive effect on the assoociation of pea ( Pisum sativum L. cv. Lincoln) chloroplast fructose- 1,6-bisphosphatase (FBPase; EC 3.1.3.11) with thylakoid membranes. The alcohol concentration needed to obtain a fixed percentage of enzyme association decreased with increased length of the aliphatic chain of the alcohol; maximum binding was obtained when the lysis medium contained, in molar fractions (or v/v percentages): 48×10-4 (T4 (2.4%), 26×10-3 (10%), 40×10-3 (15%), 76×10-3 (21%), and 13×10-2 (24%), of 1-butanol, 1-propanol, 2-propanol, ethanol, and methanol, respectively. A good correlation of binding with the octanol/water partition coefficient was observed. Since this coefficient constitutes a measure of hydrophobicity, we suggest that the binding of FBPase to the membranes occurs via hydrophobic clusters of both components. 相似文献
7.
8.
A substance in the crude preparation of NADP+ has been found,which activates snake muscle fructose-1,6-bisphosphatase at pH 9.2 and inhibits the enzyme at pH 7.5.After isolation and extensive characterization,the substance has been determined to be AMP.The activation depends on the concentrations of Mg2+ and could be observed only at concentrations above 1 mmol/L.In the presence of AMP,snake muscle fructose-1,6-bisphosphatase resembles an alkaline enzyme.Kinetic studies indicate that AMP and Mg2+ competitively regulate the activity of the enzyme.AMP releases the inhibition of Mg2+ at high concentration at alkaline pH.It has been reported that fructose-1,6-bisphosphatase with a pH optimum in the alkaline region is caused by limited proteolysis.AMP is also able to make fructose-1,6-bisphosphatase to be an alkaline enzyme.This finding indicates that proteolysis may not be the only reason for shift of the optimum pH of fructose-1,6-bisphosphatase to alkaline side and it may imply some significance in physiological regulation. 相似文献
9.
10.
11.
Strand A Zrenner R Trevanion S Stitt M Gustafsson P Gardeström P 《The Plant journal : for cell and molecular biology》2000,23(6):759-770
Photosynthetic carbon metabolism was investigated in antisense Arabidopsis lines with decreased expression of sucrose phosphate synthase (SPS) and cytosolic fructose-1,6-bisphosphatase (cFBPase). In the light, triose phosphates are exported from the chloroplast and converted to sucrose via cFBPase and SPS. At night, starch is degraded to glucose, exported and converted to sucrose via SPS. cFBPase therefore lies upstream and SPS downstream of the point at which the pathways for sucrose synthesis in the day and night converge. Decreased cFBPase expression led to inhibition of sucrose synthesis; accumulation of phosphorylated intermediates; Pi-limitation of photosynthesis; and stimulation of starch synthesis. The starch was degraded to maintain higher levels of sugars and a higher rate of sucrose export during the night. This resembles the response in other species when expression of enzymes in the upper part of the sucrose biosynthesis pathway is reduced. Decreased expression of SPS inhibited sucrose synthesis, but phosphorylated intermediates did not accumulate and carbon partitioning was not redirected towards starch. Sugar levels and sucrose export was decreased during the night as well as during the day. Although ribulose-1,5-bisphosphate regeneration and photosynthesis were inhibited, the PGA/triose-P ratio remained low and the ATP/ADP ratio high, showing that photosynthesis was not limited by the rate at which Pi was recycled during end-product synthesis. Two novel responses counteracted the decrease in SPS expression and explain why phosphorylated intermediates did not accumulate, and why allocation was not altered in the antisense SPS lines. Firstly, a threefold decrease of PPi and a shift of the UDP-glucose/hexose phosphate ratio favoured sucrose synthesis and prevented the accumulation of phosphorylated intermediates. Secondly, there was no increase of AGPase activity relative to cFBPase activity, which would prevent a shift in carbon allocation towards starch synthesis. These responses are presumably triggered when sucrose synthesis is decreased in the night, as well as by day. 相似文献
12.
13.
Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme. 下载免费PDF全文
I. J. Kurland S. J. Pilkis 《Protein science : a publication of the Protein Society》1995,4(6):1023-1037
The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms. 相似文献
14.
Rosario Hermoso Ana Chueca Juan Jose Lazaro Julio Lopez-Gorge 《Photosynthesis research》1987,14(3):269-278
An immunological method for quantitative determination of photosynthetic fructose-1,6-bisphosphatase in crude extracts of leaves is proposed. It is based on the ELISA technique, and offers two modifications. A non-competitive technique has a higher sensitivity and is the right option for samples of low fructose-1,6-bisphosphatase content. However, this method is not sufficiently specific when the total protein is higher than 5 g/cm3; so, despite its lower sensitivity, in these circumstances a competitive technique is more suitable. Thus photosynthetic fructose-1,6-bisphosphatase can be measured without interferences from the gluconeogenic cytosolic enzyme of the photosynthetic cell or from a non-specific phosphatase present in the chloroplast.Abbreviations FBP
Fructose-1,6-bisphosphate
- FBPase
Fructose-1,6-bisphosphatase 相似文献
15.
ANTONIO JESÚS SERRATO ELENA MARÍA YUBERO-SERRANO LUISA MARÍA SANDALIO JUAN MUÑOZ-BLANCO ANA CHUECA JOSÉ LUIS CABALLERO & MARIAM SAHRAWY 《Plant, cell & environment》2009,32(7):811-827
A full-length FBPase cDNA has been isolated from Fragaria × ananassa (strawberry) corresponding to a novel putative chloroplastic FBPase but lacking the regulatory redox domain, a characteristic of the plastidial isoenzyme (cpFBPaseI). Another outstanding feature of this novel isoform, called cpFBPaseII, is the absence of the canonical active site. Enzymatic assays with cpFBPaseII evidenced clear Mg2+ -dependent FBPase activity and a K m for fructose-1,6-bisphosphate (FBP) of 1.3 m m . Immunolocalization experiments and chloroplast isolation confirmed that the new isoenzyme is located in the stroma. Nevertheless, unlike cpFBPaseI, which is redox activated, cpFBPaseII did not increase its activity in the presence of either DTT or thioredoxin f (TRX f ) and is resistant to H2 O2 inactivation. Additionally, the novel isoform was able to complement the growth deficiency of the yeast FBP1 deletion fed with a non-fermentable carbon source. Furthermore, orthologues are restricted to land plants, suggesting that cpFBPaseII is a novel and an intriguing chloroplastic FBPase that emerged late in the evolution of photosynthetic organisms, possibly because of a pressing need of land plants. 相似文献
16.
The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m–2 under nitrogen and 50 W·m–2 under air, while NADP photoreduction was saturated at 240 W·m–2. Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.Abbreviations Fd
ferredoxin
- FBPase
fructose-1,6-bisphosphatase
- FTR
ferredoxin-thioredoxin reductase
- LEM
light effect mediator
- NADP-MDH
NADP-malate dehydrogenase
- Td
thioredoxin 相似文献
17.
Salinity exerted a distinctly differential effect on fructose-1,6-bisphosphatase (EC. 3.1.3.11) isolated from salt-sensitive and salt-tolerant rice (Oryza sativa) varieties. Cytosolic and chloroplastic isoforms of the enzyme from salt-sensitive rice seedlings exhibited decreased catalytic activity during growth in the presence of salt. Furthermore, chloroplastic fructose 1,6-bisphosphatase purified from salt-sensitive (O. sativa cv. IR26) and from the wild halophytic rice Porteresia coarctata differed in their in vitro salt tolerance property although they exhibited otherwise identical biochemical and immunological properties. This decline in enzyme activity was not correlated with de novo synthesis of the chloroplastic fructose-1,6-bisphosphatase protein in the presence of salt. The inhibitory effect of increasing concentration of NaCl on in vitro enzymatic activity could be prevented by preincubation of the enzyme with a number of osmolytes with an effectiveness in the order polyol>sugars. Further, the intrinsic tryptophan fluorescence of the purified rice enzyme is altered in vitro with increasing NaCl concentration which could be prevented by preincubation with inositol. Purified chloroplastic fructose-1.6-bisphosphatase from P. coarctata however, exhibits no such inhibition of enzyme activity in vitro or alteration in tryptophan fluorescence with increasing NaCl concentration. 相似文献
18.
This work was done to test claims (Sangwan and Singh, Physiol. Plant. 73: 21–26) that the developing endosperm of wheat ( Triticum aestivum L.) contains a cytosolic and a plastidic fructose- 1,6-bisphosphatase (EC 3.1.3.11; FBPase). Repetition of the procedure of Sangwan and Singh with extracts of developing endosperm of Triticum aestivum cv. Mercia produced two peaks of apparent FBPase activity on elution from DEAE-cellulose. Both peaks showed high activity of pyrophosphate:fructose-6-phos-phate 1-phosphotransferase [EC 2.7.1.90; PFK(PPi )]. The apparent FBPase activity in both peaks was stimulated by 20 μ M fructose-2,6-bisphosphate and inhibited by antibodies to PFK(PPi ). Antibody to plastidic FBPase did not react positively in an immunoblot analysis with any protein of Mr comparable to that of known FBPase in either peak. It is argued that the ability of each peak to convert fructose-1,6-bisphosphate to fructose-6-phosphate was due to PFK(PPi ). and that there remains no substantiated evidence for the presence of a plastidic FBPase in the developing endosperm of wheat. 相似文献
19.
William Martin Abdel-Zaher Mustafa Katrin Henze Claus Schnarrenberger 《Plant molecular biology》1996,32(3):485-491
Full-size cDNAs encoding the precursors of chloroplast fructose-1,6-bisphosphatase (FBP), sedoheptulose-1,7-bisphosphatase (SBP), and the small subunit of Rubisco (RbcS) from spinach were cloned. These cDNAs complete the set of homologous probes for all nuclear-encoded enzymes of the Calvin cycle from spinach (Spinacia oleracea L.). FBP enzymes not only of higher plants but also of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a eubacterial origin of these eukaryotic nuclear genes. Chloroplast and cytosolic FBP isoenzymes of higher plants arose through a gene duplication event which occurred early in eukaryotic evolution. Both FBP and SBP of higher plant chloroplasts have acquired substrate specificity, i.e. have undergone functional specialization since their divergence from bifunctional FBP/SBP enzymes of free-living eubacteria.Abbreviations FBP
fructose-1,6-bisphosphatase
- SBP
sedoheptulose-1,7-bisphosphatase
- FBA
fructose-1,6-bisphosphate aldolase 相似文献
20.
Muscle fructose-1,6-bisphosphatase (FBPase) is highly sensitive toward inhibition by AMP and calcium ions. In allosteric inhibition by AMP, a loop 52-72 plays a decisive role. This loop is a highly conservative region in muscle and liver FBPases. It is feasible that the same region is involved in the inhibition by calcium ions. To test this hypothesis, chemical modification, limited proteolysis and site directed mutagenesis Glu(69)/Gln were employed. The chemical modification of Lys(71-72) and the proteolytic cleavage of the loop resulted in the significant decrease of the muscle FBPase sensitivity toward inhibition by calcium ions. The mutation of Glu(69)-->Gln resulted in a 500-fold increase of muscle isozyme I(0.5) vs. calcium ions. These results demonstrate the key role that the 52-72 amino acid loop plays in determining the sensitivity of FBPase to inhibition by AMP and calcium ions. 相似文献