首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Plasmodium development within its mosquito vector is an essential step in malaria transmission, as illustrated in world regions where malaria was successfully eradicated via vector control. The innate immune system of most mosquitoes is able to completely clear a Plasmodium infection, preventing parasite transmission to humans. Understanding the biological basis of this phenomenon is expected to inspire new strategies to curb malaria incidence in countries where vector control via insecticides is unpractical, or inefficient because insecticide resistance genes have spread across mosquito populations. Several aspects of mosquito biology that condition the success of the parasite in colonizing its vector begin to be understood at the molecular level, and a wealth of recently published data highlights the multifaceted nature of the mosquito response against parasite invasion. In this brief review, we attempt to provide an integrated view of the challenges faced by the parasite to successfully invade its mosquito host, and discuss the possible intervention strategies that could exploit this knowledge for the fight against human malaria.  相似文献   

2.
The identification and cloning of genes conferring mosquito refractoriness to the malaria parasite is critical for understanding malaria transmission mechanisms and holds great promise for developing novel approaches to malaria control. The mosquito midgut is the first major site of interaction between the parasite and the mosquito. Failure of the parasite to negotiate this environment can be a barrier for development and is likely the main cause of mosquito refractoriness. This paper reports a study on Aedes aegypti midgut expressed sequence tag (EST) identification and the determination of genes differentially expressed in mosquito populations susceptible and refractory to the avian malaria parasite Plasmodium gallinaceum. We sequenced a total of 1200 cDNA clones and obtained 1183 high-quality mosquito midgut ESTs that were computationally collapsed into 105 contigs and 251 singlets. All 1200 midgut cDNA clones, together with an additional 102 genetically or physically mapped Ae. aegypti clones, were spotted on single arrays with 12 replicates. Of those interrogated microarray elements, 28 (2.3%) were differentially expressed between the susceptible and refractory mosquito populations. Twenty-seven elements showed at least a two-fold increase in expression in the susceptible population level relative to the refractory population and one clone showed reduced expression. Sequence analysis of these differentially expressed genes revealed that 10 showed no significant similarity to any known genes, 6 clones had matches with unannotated genes of Anopheles gambiae, and 12 clones exhibited significant similarity to known genes. Real-time quantitative RT-PCR of selected clones confirmed the mRNA expression profiles from the microarray analysis.  相似文献   

3.
4.
Migration of the protozoan parasite Plasmodium through the mosquito is a complex and delicate process, the outcome of which determines the success of malaria transmission. The mosquito is not simply the vector of Plasmodium but, in terms of the life cycle, its definitive host: there, the parasite undergoes its sexual development, which results in colonization of the mosquito salivary glands. Two of the parasite's developmental stages in the mosquito, the ookinete and the sporozoite, are invasive and depend on gliding motility to access, penetrate and traverse their host cells. Recent advances in the field have included the identification of numerous Plasmodium molecules that are essential for parasite migration in the mosquito vector.  相似文献   

5.
Deciphering molecular interactions between the malaria parasite and its mosquito vector is an emerging area of research that will be greatly facilitated by the recent sequencing of the genomes of Anopheles gambiae mosquito and of various Plasmodium species. So far, most such studies have focused on Plasmodium berghei, a parasite species that infects rodents and is more amenable to studies. Here, we analysed the expression pattern of nine An.gambiae genes involved in immune surveillance during development of the human malaria parasite P.falciparum in mosquitoes fed on parasite-containing blood from patients in Cameroon. We found that P.falciparum ingestion triggers a midgut-associated, as well as a systemic, response in the mosquito, with three genes, NOS, defensin and GNBP, being regulated by ingestion of gametocytes, the infectious stage of the parasite. Surprisingly, we found a different pattern of expression of these genes in the An.gambiae-P.berghei model. Therefore, differences in mosquito reaction against various Plasmodium species may exist, which stresses the need to validate the main conclusions suggested by the P.berghei-An.gambiae model in the P.falciparum-An.gambiae system.  相似文献   

6.
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.  相似文献   

7.
The malaria parasite, Plasmodium, requires sexual development in the mosquito before it can be transmitted to the vertebrate host. Mosquito genes are able to substantially modulate this process, which can result in major decreases in parasite numbers. Even in susceptible mosquitoes, haemolymph proteins implicated in systemic immune reactions, together with local epithelial responses, cause lysis of more than 80% of the ookinetes that cross the mosquito midgut. In a refractory mosquito strain, immune responses lead to melanisation of virtually all parasites. Conversely, certain mosquito genes have an opposite effect: they are used by the parasite to evade defence reactions. Detailed understanding of the interplay between positive and negative regulators of parasite development could lead to the generation of novel approaches for malaria control through the vector.  相似文献   

8.
We are developing transgenic mosquitoes resistant to malaria parasites to test the hypothesis that genetically-engineered mosquitoes can be used to block the transmission of the parasites. We are developing and testing many of the necessary methodologies with the avian malaria parasite, Plasmodium gallinaceum, and its laboratory vector, Aedes aegypti, in anticipation of engaging the technical challenges presented by the malaria parasite, P. falciparum, and its major African vector, Anopheles gambiae. Transformation technology will be used to insert into the mosquito a synthetic gene for resistance to P. gallinaceum. The resistance gene will consist of a promoter of a mosquito gene controlling the expression of an effector protein that interferes with parasite development and/or infectivity. Mosquito genes whose promoter sequences are capable of sex- and tissue-specific expression of exogenous coding sequences have been identified, and stable transformation of the mosquito has been developed. We now are developing the expressed effector portion of the synthetic gene that will interfere with the transmission of the parasites. Mouse monoclonal antibodies that recognize the circumsporozoite protein of P. gallinaceum block sporozoite invasion of mosquito salivary glands, as well as abrogate the infectivity of sporozoites to a vertebrate host, the chicken, Gallus gallus, and block sporozoite invasion and development in susceptible cell lines in vitro. Using the genes encoding these antibodies, we propose to clone and express single-chain antibody constructs (scFv) that will serve as the effector portion of the gene that interferes with transmission of P. gallinaceum sporozoites.  相似文献   

9.
The malaria parasite, Plasmodium, has evolved an intricate life cycle that includes stages specific to a mosquito vector and to the vertebrate host. The mosquito midgut represents the first barrier Plasmodium parasites encounter following their ingestion with a blood meal from an infected vertebrate. Elucidation of the molecular interaction between the parasite and the mosquito could help identify novel approaches to preventing parasite development and subsequent transmission to vertebrates. We have used an integrated Bulked Segregant Analysis-Differential Display (BSA-DD) approach to target genes expressed that are in the midgut and located within two genome regions involved in determining susceptibility to P. gallinaceum in the mosquito Aedes aegypti. A total of twenty-two genes were identified and characterized, including five genes with no homologues in public sequence databases. Eight of these genes were mapped genetically to intervals on chromosome 2 that contain two quantitative trait loci (QTLs) that determine susceptibility to infection by P. gallinaceum. Expression analysis revealed several expression patterns, and ten genes were specifically or preferentially expressed in the midgut of adult females. Real-time PCR quantification of expression with respect to the time of blood meal ingestion and infection status in mosquito strains permissive and refractory for malaria revealed a differential expression pattern for seven genes. These represent candidate genes that may influence the ability of the mosquito vector to support the development of Plasmodium parasites. Here we describe their isolation and discuss their putative roles in parasite-mosquito interactions and their use as potential targets in strategies designed to block transmission of malaria.  相似文献   

10.
Reduction of transmission is critical for effective malaria control. Transmission blocking vaccines, which are intended to prevent the parasites from infecting the mosquito vectors, could target mosquito antigens that are required for the successful development of the parasite in its vector. Here we review recent advances in the identification of promising candidate antigens for a mosquito-based transmission blocking vaccine.  相似文献   

11.
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.  相似文献   

12.
G Dimopoulos  D Seeley  A Wolf    F C Kafatos 《The EMBO journal》1998,17(21):6115-6123
Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-rich mucin region). In the midgut, a robust response occurs at 24 h post-infection, at a time when malaria ookinetes traverse the midgut epithelium, but subsides at later phases of malaria development. In contrast, the salivary glands show no significant response at 24 h, but are activated in a prolonged late phase when sporozoites are released from the midgut into the haemolymph and invade the glands, between 10 and 25 days after blood feeding. Furthermore, the abdomen of the mosquito minus the midgut shows significant activation of immune markers, with complex kinetics that are distinct from those of both midgut and salivary glands. The parasite evidently elicits immune responses in multiple tissues of the mosquito, two of which are epithelia that the parasite must traverse to complete its development. The mechanisms of these responses and their significance for malaria transmission are discussed.  相似文献   

13.
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.  相似文献   

14.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

15.
16.
Research on Plasmodium sporozoite biology aims at understanding the developmental program steering the formation of mature infectious sporozoites - the transmission stage of the malaria parasite. The recent identification of genes that are vital for sporozoite egress from oocysts and subsequent targeting and transmigration of the mosquito salivary glands allows the identification of mosquito factors required for life cycle completion. Mature sporozoites appear to be equipped with the entire molecular repertoire for successful transmission and subsequent initiation of liver stage development. Innovative malaria intervention strategies that target the early, non-pathogenic phases of the life cycle will crucially depend on our insights into sporozoite biology and the underlying molecular mechanisms that lead the parasite from the mosquito midgut to the liver.  相似文献   

17.
18.
Incessant transmission of the parasite by mosquitoes makes most attempts to control malaria fail. Blocking of parasite transmission by mosquitoes therefore is a rational strategy to combat the disease. Upon ingestion of blood meal mosquitoes secrete chitinase into the midgut. This mosquito chitinase is a zymogen which is activated by the removal of a propeptide from the N-terminal. Since the midgut peritrophic matrix acts as a physical barrier, the activated chitinase is likely to contribute to the further development of the malaria parasite in the mosquito. Earlier it has been shown that inhibiting chitinase activity in the mosquito midgut blocked sporogonic development of the malaria parasite. Since synthetic propeptides of several zymogens have been found to be potent inhibitors of their respective enzymes, we tested propeptide of mosquito midgut chitinase as an inhibitor and found that the propeptide almost completely inhibited the recombinant or purified native Anopheles gambiae chitinase. We also examined the effect of the inhibitory peptide on malaria parasite development. The result showed that the synthetic propeptide blocked the development of human malaria parasite Plasmodium falciparum in the African malaria vector An. gambiae and avian malaria parasite Plasmodium gallinaceum in Aedes aegypti mosquitoes. This study implies that the expression of inhibitory mosquito midgut chitinase propeptide in response to blood meal may alter the mosquito's vectorial capacity. This may lead to developing novel strategies for controlling the spread of malaria.  相似文献   

19.
Menge DM  Zhong D  Guda T  Gouagna L  Githure J  Beier J  Yan G 《Genetics》2006,173(1):235-241
Natural anopheline populations exhibit much variation in ability to support malaria parasite development, but the genetic mechanisms underlying this variation are not clear. Previous studies in Mali, West Africa, identified two quantitative trait loci (QTL) in Anopheles gambiae mosquitoes that confer refractoriness (failure of oocyst development in mosquito midguts) to natural Plasmodium falciparum parasites. We hypothesize that new QTL may be involved in mosquito refractoriness to malaria parasites and that the frequency of natural refractoriness genotypes may be higher in the basin region of Lake Victoria, East Africa, where malaria transmission intensity and parasite genetic diversity are among the highest in the world. Using field-derived F2 isofemale families and microsatellite marker genotyping, two loci significantly affecting oocyst density were identified: one on chromosome 2 between markers AG2H135 and AG2H603 and the second on chromosome 3 near marker AG3H93. The first locus was detected in three of the five isofemale families studied and colocalized to the same region as Pen3 and pfin1 described in other studies. The second locus was detected in two of the five isofemale families, and it appears to be a new QTL. QTL on chromosome 2 showed significant additive effects while those on chromosome 3 exhibited significant dominant effects. Identification of P. falciparum-refractoriness QTL in natural An. gambiae mosquitoes is critical to the identification of the genes involved in malaria parasite transmission in nature and for understanding the coevolution between malaria parasites and mosquito vectors.  相似文献   

20.
We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune responses or interactions with Plasmodium. The functions of five Anopheles gambiae homologs were tested by using RNAi to knock down gene function followed by measuring the growth of the rodent parasite, Plasmodium berghei. Loss of function of four of these genes in the mosquito affected Plasmodium growth, suggesting that Drosophila can be used effectively as a surrogate mosquito to identify relevant host factors in the mosquito.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号