首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Zuo Y  Lin A  Chang P  Gan WB 《Neuron》2005,46(2):181-189
Synapse formation and elimination occur throughout life, but the magnitude of such changes at distinct developmental stages remains unclear. Using transgenic mice overexpressing yellow fluorescent protein and transcranial two-photon microscopy, we repeatedly imaged dendritic spines on the apical dendrites of layer 5 pyramidal neurons. In young adolescent mice (1-month-old), 13%-20% of spines were eliminated and 5%-8% formed over 2 weeks in barrel, motor, and frontal cortices, indicating a cortical-wide spine loss during this developmental period. As animals mature, there is also a substantial loss of dendritic filopodia involved in spinogenesis. In adult mice (4-6 months old), 3%-5% of spines were eliminated and formed over 2 weeks in various cortical regions. Over 18 months, only 26% of spines were eliminated and 19% formed in adult barrel cortex. Thus, after a concurrent loss of spines and spine precursors in diverse regions of young adolescent cortex, spines become stable and a majority of them can last throughout life.  相似文献   

2.
Sleep is maximal during early postnatal life when rapid and extensive synapse remodeling occurs. It remains unknown whether and how sleep affects synapse development and plasticity. Using transcranial two‐photon microscopy, we examined the formation and elimination of fluorescently labeled dendritic spines and filopodia of Layer 5 pyramidal neurons in the barrel cortex of 3‐week‐old mice during wakefulness and sleep. We observed high turnover of dendritic protrusions over 2 h in both wake and sleep states. The formation rate of dendritic spines or filopodia over 2 h was comparable between the two states. The elimination rate of dendritic spines or filopodia was lower during 2‐h wakefulness than during 2‐h sleep. Similar results were observed on dendritic protrusion dynamics over 12‐h light/dark cycle when mice spent more time asleep or awake. The substantial remodeling of dendritic protrusions during the sleep state supports the notion that sleep plays an important role in the development and plasticity of synaptic connections in the mouse cortex. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

3.
In the rodent vibrissal system, active sensation and sensorimotor integration are mediated in part by connections between barrel cortex and vibrissal motor cortex. Little is known about how these structures interact at the level of neurons. We used Channelrhodopsin-2 (ChR2) expression, combined with anterograde and retrograde labeling, to map connections between barrel cortex and pyramidal neurons in mouse motor cortex. Barrel cortex axons preferentially targeted upper layer (L2/3, L5A) neurons in motor cortex; input to neurons projecting back to barrel cortex was particularly strong. Barrel cortex input to deeper layers (L5B, L6) of motor cortex, including neurons projecting to the brainstem, was weak, despite pronounced geometric overlap of dendrites with axons from barrel cortex. Neurons in different layers received barrel cortex input within stereotyped dendritic domains. The cortico-cortical neurons in superficial layers of motor cortex thus couple motor and sensory signals and might mediate sensorimotor integration and motor learning.  相似文献   

4.
Stern EA  Maravall M  Svoboda K 《Neuron》2001,31(2):305-315
Cortical synaptic circuitry develops rapidly in the second postnatal week, simultaneous with experience-dependent turnover of dendritic spines. To relate the emergence of sensory maps to synaptogenesis, we recorded synaptic potentials evoked by whisker deflection in layer 2/3 neurons from postnatal day (P) 12 to 20. At P12, synaptic responses were undetectable. Only 2 days later in life (P14), receptive fields had mature organization. Sensory deprivation, if initiated before P14, disrupted receptive field structure. In layer 4, responses and maps were already mature by P12 and insensitive to deprivation, implying that barrel cortex develops from layer 4 to layer 2/3. Thus, P12-14 is a critical period shared by layer 2/3 synapses and their spines, suggesting that spine plasticity is involved in the refinement of maps.  相似文献   

5.
During sensory deprivation, the barrel cortex undergoes expansion of a functional column representing spared inputs (spared column), into the neighboring deprived columns (representing deprived inputs) which are in turn shrunk. As a result, the neurons in a deprived column simultaneously increase and decrease their responses to spared and deprived inputs, respectively. Previous studies revealed that dendritic spines are remodeled during this barrel map plasticity. Because cofilin1, a predominant regulator of actin filament turnover, governs both the expansion and shrinkage of the dendritic spine structure in vitro, it hypothetically regulates both responses in barrel map plasticity. However, this hypothesis remains untested. Using lentiviral vectors, we knocked down cofilin1 locally within layer 2/3 neurons in a deprived column. Cofilin1-knocked-down neurons were optogenetically labeled using channelrhodopsin-2, and electrophysiological recordings were targeted to these knocked-down neurons. We showed that cofilin1 knockdown impaired response increases to spared inputs but preserved response decreases to deprived inputs, indicating that cofilin1 dependency is dissociated in these two types of barrel map plasticity. To explore the structural basis of this dissociation, we then analyzed spine densities on deprived column dendritic branches, which were supposed to receive dense horizontal transcolumnar projections from the spared column. We found that spine number increased in a cofilin1-dependent manner selectively in the distal part of the supragranular layer, where most of the transcolumnar projections existed. Our findings suggest that cofilin1-mediated actin dynamics regulate functional map plasticity in an input-specific manner through the dendritic spine remodeling that occurs in the horizontal transcolumnar circuits. These new mechanistic insights into transcolumnar plasticity in adult rats may have a general significance for understanding reorganization of neocortical circuits that have more sophisticated columnar organization than the rodent neocortex, such as the primate neocortex.  相似文献   

6.
Chen JL  Villa KL  Cha JW  So PT  Kubota Y  Nedivi E 《Neuron》2012,74(2):361-373
A key feature of the mammalian brain is its capacity to adapt in response to experience, in part by remodeling of synaptic connections between neurons. Excitatory synapse rearrangements have been monitored in vivo by observation of dendritic spine dynamics, but lack of a vital marker for inhibitory synapses has precluded their observation. Here, we simultaneously monitor in vivo inhibitory synapse and dendritic spine dynamics across the entire dendritic arbor of pyramidal neurons in the adult mammalian cortex using large-volume, high-resolution dual-color two-photon microscopy. We find that inhibitory synapses on dendritic shafts and spines differ in their distribution across the arbor and in their remodeling kinetics during normal and altered sensory experience. Further, we find inhibitory synapse and dendritic spine remodeling to be spatially clustered and that clustering is influenced by sensory input. Our findings provide in vivo evidence for local coordination of inhibitory and excitatory synaptic rearrangements.  相似文献   

7.
Neuronal dendrites, together with dendritic spines, exhibit enormously diverse structure. Selective targeting and local translation of mRNAs in dendritic spines have been implicated in synapse remodeling or synaptic plasticity. The mechanism of mRNA transport to the postsynaptic site is a fundamental question in local dendritic translation. TLS (translocated in liposarcoma), previously identified as a component of hnRNP complexes, unexpectedly showed somatodendritic localization in mature hippocampal pyramidal neurons. In the present study, TLS was translocated to dendrites and was recruited to dendrites not only via microtubules but also via actin filaments. In mature hippocampal pyramidal neurons, TLS accumulated in the spines at excitatory postsynapses upon mGluR5 activation, which was accompanied by an increased RNA content in dendrites. Consistent with the in vitro studies, TLS-null hippocampal pyramidal neurons exhibited abnormal spine morphology and lower spine density. Our results indicate that TLS participates in mRNA sorting to the dendritic spines induced by mGluR5 activation and regulates spine morphology to stabilize the synaptic structure.  相似文献   

8.
The cyclic nucleotide cGMP is an intracellular second messenger with important roles in neuronal functions and animals' behaviors. The phosphodiesterases (PDEs) are a family of enzymes that hydrolyze the second messengers cGMP and cAMP. Inhibition of phosphodiesterase 9 (PDE9), a main isoform of PDEs hydrolyzing cGMP, has been shown to improve learning and memory as well as cognitive function in rodents. However, the role of PDE9 in regulating neuronal structure and function in vivo remains unclear. Here we used in vivo two‐photon microscopy to investigate the effect of a selective PDE9 inhibitor PF‐04449613 on the activity and plasticity of dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex. We found that administration of PF‐04449613 increased calcium activity of dendrites and dendritic spines of layer V pyramidal neurons in mice under resting and running conditions. Chronic treatment of PF‐04449613 over weeks increased dendritic spine formation and elimination under basal conditions. Furthermore, PF‐04449613 treatment over 1–7 days increased the formation and survival of new spines as well as performance improvement after rotarod motor training. Taken together, our studies suggest that elevating the level of cGMP with the PDE9 inhibitor PF‐04449613 increases synaptic calcium activity and learning‐dependent synaptic plasticity, thereby contributing to performance improvement after learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000–000, 2018  相似文献   

9.
During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of?inhibitory synapses onto pyramidal neurons is?a major component of plasticity in the adult neocortex. In?vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry.  相似文献   

10.
Similar to maternal care, paternal care is a source of neonatal sensory stimulation, which in primates and rodents has been shown to be essential for developing structure and function of sensory cortices. The aim of our study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on dendritic and synaptic development in the somatosensory cortex. We (i) quantified the amount of paternal care in relation to total parental investment and (ii) compared dendritic and synaptic development of pyramidal neurons in the somatosensory cortex of animals raised by a single mother or by both parents. On the behavioral level we show that paternal care comprises 37% of total parent‐offspring interactions, and that the somatosensory stimulation provided by the fathers primarily consists of huddling, licking/grooming, and playing. On the morphological level we found that, compared with offspring raised by both parents (mother and father), the father‐deprived animals displayed significantly reduced spine numbers on the basal dendrites of pyramidal neurons. Furthermore, paternal deprivation induces hemispheric asymmetry of the dendritic morphology of somatosensory pyramidal neurons. Father‐deprived animals show shorter and less complex basal dendrites in the left somatosensory cortex compared with the right hemisphere. These findings indicate that paternal deprivation results in delayed or retarded dendritic and synaptic development of somatosensory circuits. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

11.
Gangliosides are characteristic plasma membrane constituents of vertebrate brain used as milestones of neuronal development. As neuronal morphology is a good indicator of neuronal differentiation, we analyzed how lack of the ganglioside biosynthetic gene Galgt1 whose product is critical for production of four major adult mammalian brain complex gangliosides (GM1, GD1a, GD1b and GT1b) affects neuronal maturation in vivo. To define maturation of cortical neurons in mice lacking B4galnt1 we performed a morphological analysis of Golgi-Cox impregnated pyramidal neurons in primary motor cortex and granular cells of dentate gyrus in 3, 21 and 150 days old B4galnt1-null and wild type mice. Quantitative analysis of basal dendritic tree on layer III pyramidal neurons in the motor cortex showed very immature dendritic picture in both mice at postnatal day 3. At postnatal day 21 both mice reached adult values in dendritic length, complexity and spine density. No quantitative differences were found between B4galnt1-null and wild type mice in pyramidal cells of motor cortex or granular cells of dentate gyrus at any examined age. In addition, the general structural and neuronal organization of all brain structures, qualitatively observed on Nissl and Golgi-Cox, were similar Our results demonstrate that neurons can develop normal dendritic complexity and length without presence of complex gangliosides in vivo. Therefore, behavioral differences observed in B4galnt1-null mice may be attributed to functional rather than morphological level of dendrites and spines of cortical pyramidal neurons.  相似文献   

12.
Dendritic spines are postsynaptic domains that shape structural and functional properties of neurons. Upon neuronal activity, Ca2+ transients trigger signaling cascades that determine the plastic remodeling of dendritic spines, which modulate learning and memory. Here, we study in mice the role of the intracellular Ca2+ channel Ryanodine Receptor 2 (RyR2) in synaptic plasticity and memory formation. We demonstrate that loss of RyR2 in pyramidal neurons of the hippocampus impairs maintenance and activity-evoked structural plasticity of dendritic spines during memory acquisition. Furthermore, post-developmental deletion of RyR2 causes loss of excitatory synapses, dendritic sparsification, overcompensatory excitability, network hyperactivity and disruption of spatially tuned place cells. Altogether, our data underpin RyR2 as a link between spine remodeling, circuitry dysfunction and memory acquisition, which closely resemble pathological mechanisms observed in neurodegenerative disorders.Subject terms: Neuroscience, Neurological disorders  相似文献   

13.

Background

Alzheimer’s disease (AD) is characterized by amyloid deposition, tangle formation as well as synapse loss. Synaptic abnormalities occur early in the pathogenesis of AD. Identifying early synaptic abnormalities and their underlying mechanisms is likely important for the prevention and treatment of AD.

Methods

We performed in vivo two-photon calcium imaging to examine the activities of somas, dendrites and dendritic spines of layer 2/3 pyramidal neurons in the primary motor cortex in the APPswe/PS1dE9 mouse model of AD and age-matched wild type control mice. We also performed calcium imaging to determine the effect of Aβ oligomers on dendritic calcium activity. In addition, structural and functional two-photon imaging were used to examine the link between abnormal dendritic calcium activity and changes in dendritic spine size in the AD mouse model.

Results

We found that somatic calcium activities of layer 2/3 neurons were significantly lower in the primary motor cortex of 3-month-old APPswe/PS1dE9 mice than in wild type mice during quiet resting, but not during running on a treadmill. Notably, a significantly larger fraction of apical dendrites of layer 2/3 pyramidal neurons showed calcium transients with abnormally long duration and high peak amplitudes during treadmill running in AD mice. Administration of Aβ oligomers into the brain of wild type mice also induced abnormal dendritic calcium transients during running. Furthermore, we found that the activity and size of dendritic spines were significantly reduced on dendritic branches with abnormally prolonged dendritic calcium transients in AD mice.

Conclusion

Our findings show that abnormal dendritic calcium transients and synaptic depotentiation occur before amyloid plaque formation in the motor cortex of the APPswe/PS1dE9 mouse model of AD. Dendritic calcium transients with abnormally long durations and high amplitudes could be induced by soluble Aβ oligomers and contribute to synaptic deficits in the early pathogenesis of AD.
  相似文献   

14.
In order to examine the effects of activity on spine production and/or maintenance in the cerebral cortex, we have compared the number of dendritic spines on pyramidal neurons in slices of PO mouse somatosensory cortex maintained in organotypic slice cultures under conditions that altered basal levels of spontaneous electrical activity. Cultures chronically exposed to 100 μM picrotoxin (PTX) for 14 days exhibited significantly elevated levels of electrical activity when compared to neurons in control cultures. Pyramidal neurons raised in the presence of PTX showed significantly densities of dendritic spines on primary apical, secondary apical, and secondary basal dendrites when compared to control cultures. The PTX-induced increase in spine density was dose dependent and appeared to saturate at 100 μM. Cultures exhibiting little or no spontaneous activity, as a result of growth in a combination of PTX and tetrodotoxin (TTx), showed significantly fewer dendritic spines compared to cultures maintained in PTX alone. These results demonstrate that the density of spines on layers V and VI pyramidal neurons can be modulated by growth conditions that alter the levels of spontaneous electrical activity. 1994 John Wiley & Sons, Inc.  相似文献   

15.
16.
Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%–45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits.  相似文献   

17.
Knott GW  Quairiaux C  Genoud C  Welker E 《Neuron》2002,34(2):265-273
During development, alterations in sensory experience modify the structure of cortical neurons, particularly at the level of the dendritic spine. Are similar adaptations involved in plasticity of the adult cortex? Here we show that a 24 hr period of single whisker stimulation in freely moving adult mice increases, by 36%, the total synaptic density in the corresponding cortical barrel. This is due to an increase in both excitatory and inhibitory synapses found on spines. Four days after stimulation, the inhibitory inputs to the spines remain despite total synaptic density returning to pre-stimulation levels. Functional analysis of layer IV cells demonstrated altered response properties, immediately after stimulation, as well as four days later. These results indicate activity-dependent alterations in synaptic circuitry in adulthood, modifying the flow of sensory information into the cerebral cortex.  相似文献   

18.
Dendritic spines receive most excitatory inputs in the CNS. Recent evidence has demonstrated that the spine head volume is linearly correlated with the readily releasable pool of neurotransmitter and the PSD size. These correlations can be used to functionally interpret spine morphology. Using Golgi impregnations and light microscopy, we reconstructed 23000 spines from pyramidal neurons in layers 2/3, 4, 5 and 6 of mouse primary visual cortex and CA1 hippocampal region and measured their spine head diameters and densities. Spine head diameters and densities are variable within and across cells, although they are similar between apical and basal dendrites. When compared to other regions, layer 5 neurons have larger spine heads and CA1 neurons higher spine densities. Interestingly, we detect a correlation between spine head diameter and interspine distance within and across cells, whereby larger spines are spaced further away from each other than smaller spines. Finally, in CA1 neurons, spine head diameters are larger, and spine density lower, in distal apical dendrites (>200 microm from soma) compared to proximal regions. These results reveal that spine morphologies and densities, and therefore synaptic properties, are jointly modulated with respect to cortical region, laminar position, and, in some cases, even the position of the spine along the dendritic tree. Individual neurons also appear to regulate their apical and basal spine densities and morphologies in concert. Our data provide evidence for a homeostatic control of excitatory synaptic strength.  相似文献   

19.
In the present study, we investigated the effects of chronic exposure (14 and 28 days) to a 0.5 mT 50 Hz extremely low-frequency magnetic field (ELM) on the dendritic spine density and shape in the superficial layers of the medial entorhinal cortex (MEC). We performed Golgi staining to reveal the dendritic spines of the principal neurons in rats. The results showed that ELM exposure induced a decrease in the spine density in the dendrites of stellate neurons and the basal dendrites of pyramidal neurons at both 14 days and 28 days, which was largely due to the loss of the thin and branched spines. The alteration in the density of mushroom and stubby spines post ELM exposure was cell-type specific. For the stellate neurons, ELM exposure slightly increased the density of stubby spines at 28 days, while it did not affect the density of mushroom spines at the same time. In the basal dendrites of pyramidal neurons, we observed a significant decrease in the mushroom spine density only at the later time point post ELM exposure, while the stubby spine density was reduced at 14 days and partially restored at 28 days post ELM exposure. ELM exposure-induced reduction in the spine density in the apical dendrites of pyramidal neurons was only observed at 28 days, reflecting the distinct vulnerability of spines in the apical and basal dendrites. Considering the changes in spine number and shape are involved in synaptic plasticity and the MEC is a part of neural network that is closely related to learning and memory, these findings may be helpful for explaining the ELM exposure-induced impairment in cognitive functions.  相似文献   

20.
Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD) mediated by metabotropic glutamate receptors (mGluRs) through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号