共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mugdha Bhati Mihwa Lee Amy Louise Nancarrow Ingolf Bach J. Mitchell Guss Jacqueline Mary Matthews 《Acta Crystallographica. Section F, Structural Biology Communications》2008,64(4):297-299
A stable intramolecular complex comprising the LIM domains of the LIM‐homeodomain protein Lhx3 tethered to a peptide region of Isl1 has been engineered, purified and crystallized. The monoclinic crystals belong to space group C2, with unit‐cell parameters a = 119, b = 62.2, c = 51.9 Å, β = 91.6°, and diffract to 2.05 Å resolution. 相似文献
4.
《Current biology : CB》2019,29(12):1963-1975.e5
- Download : Download high-res image (130KB)
- Download : Download full-size image
5.
Mouse retinal progenitor cell (RPC) cocultivation with retinal pigment epithelial cell culture affects features of RPC differentiation 总被引:1,自引:0,他引:1
Kholodenko IV Buzdin AA Kholodenko RV Baibikova JA Sorokin VF Yarygin VN Sverdlov ED 《Biochemistry. Biokhimii?a》2006,71(7):767-774
We provide evidence that coculturing of retinal progenitor cells (RPC) with retinal pigment epithelial cells significantly biases the standard in vitro RPC differentiation patterns. In particular, in cocultivation experiments RPCs lost the ability to differentiate spontaneously and displayed approximately 2.1-2.4-fold increase in immunoreactivity to the neural stem cell marker nestin and approximately 1.6-1.7-fold increase in rod photoreceptor cell rhodopsin marker immunoreactivity. The data suggest the influence of the intercellular interaction networks on RPC differentiation. 相似文献
6.
Yanxiu Li Haibo Li LuSi Zhang Siqi Xiong ShiJin Wen Xiaobo Xia Xia Zhou 《Journal of cellular physiology》2019,234(11):21307-21315
7.
8.
Katayoun Aghajani Shilpa Keerthivasan Yu Yu Fotini Gounari 《Genesis (New York, N.Y. : 2000)》2012,50(12):908-913
After thymic emigration CD4‐T‐cells continue to differentiate into multiple effector and suppressor sublineages in peripheral lymphoid organs. In vivo analysis of peripheral CD4‐T‐cell differentiation has relied on animal models with targeted gene mutations. These are expressed either constitutively or conditionally after Cre mediated recombination. Available Cre transgenic strains to specifically target T‐cells act at stages of thymocyte development that precede thymic selection. Tracing gene functions in CD4‐T‐cell development after thymic exit becomes complicated when the targeted gene is essential during thymic development. Other approaches to conditionally modify gene functions in peripheral T‐cells involve infection of in vitro activated cells with Cre expressing lenti‐, retro‐, or adenoviruses, which precludes in vivo analyses. To study molecular mechanisms of peripheral CD4‐T‐cell differentiation in vivo and in vitro we generated transgenic mice expressing a tamoxifen inducible Cre recombinase (CreERT2) under the control of the CD4 gene promoter. We show here that in CD4CreERT2 mice Cre is inducibly and selectively activated in CD4‐T‐cells. Tamoxifen treatment both in vivo and in vitro results in efficient recombination of loci marked by LoxP sites. Moreover, this strain shows no abnormalities related to transgene insertion. Therefore it provides a valuable tool for studying gene function during differentiation of naïve peripheral CD4‐T‐cells into effector or suppressor sub‐lineages. genesis 50:908–913, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
9.
10.
《Developmental neurobiology》2017,77(9):1114-1129
We evaluated the expression and function of the microglia‐specific growth factor, Progranulin‐a (Pgrn‐a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn‐a is expressed throughout the forebrain, but by 48 hpf pgrn‐a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn‐a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed—retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn‐a knockdown. Depleting Pgrn‐a results in a significant lengthening of the cell cycle. These data suggest that Pgrn‐a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn‐a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114–1129, 2017 相似文献
11.
12.
High‐throughput ‐omics techniques have revolutionised biology, allowing for thorough and unbiased characterisation of the molecular states of biological systems. However, cellular decision‐making is inherently a unicellular process to which “bulk” ‐omics techniques are poorly suited, as they capture ensemble averages of cell states. Recently developed single‐cell methods bridge this gap, allowing high‐throughput molecular surveys of individual cells. In this review, we cover core concepts of analysis of single‐cell gene expression data and highlight areas of developmental biology where single‐cell techniques have made important contributions. These include understanding of cell‐to‐cell heterogeneity, the tracing of differentiation pathways, quantification of gene expression from specific alleles, and the future directions of cell lineage tracing and spatial gene expression analysis. 相似文献
13.
Vazhanthodi A. Rasheed Sreekumaran Sreekanth Sivadasan B. Dhanesh Mundackal S. Divya Thulasi S. Divya Palakkottu K. Akhila Chandramohan Subashini Krishnankutty Chandrika Sivakumar Ani V. Das Jackson James 《Developmental neurobiology》2014,74(12):1155-1171
Differential regulation of Brn3b is essential for the Retinal Ganglion Cell (RGC) development in the two phases of retinal histogenesis. This biphasic Brn3b regulation is required first, during early retinal histogenesis for RGC fate specification and secondly, during late histogenesis, where Brn3b is needed for RGC axon guidance and survival. Here, we have looked into how the regulation of Brn3b at these two stages happens. We identified two miRNAs, miR‐23a and miR‐374, as regulators of Brn3b expression, during the early stage of RGC development. Temporal expression pattern of miR‐23a during E10–19, PN1–7, and adult retina revealed an inverse relation with Brn3b expression. Though miR‐374 did not show such a pattern, its co‐expression with miR‐23a evidently inhibited Brn3b. We further substantiated these findings by ex vivo overexpression of these miRNAs in E14 mice retina and found that miR‐23a and miR‐374 together brings about a change in Brn3b expression pattern in ganglion cell layer (GCL) of the developing retina. From our results, it appears that the combined expression of these miRNAs could be regulating the timing of the wave of Brn3b expression required for early ganglion cell fate specification and later for its survival and maturation into RGCs. Taken together, here we provide convincing evidences for the existence of a co‐ordinated mechanism by miRNAs to down regulate Brn3b that will ultimately regulate the development of RGCs from their precursors. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1155–1171, 2014 相似文献
14.
Hui He Wen Li Beilei Shen Heyan Zhao Juan Liu Jianbing Qin Jinhong Shi Xin Yi Min Peng Ran Huo Guohua Jin 《Cell biology international》2020,44(2):536-548
Valproate (VPA), an effective clinical approved anti‐epileptic drug and mood stabilizer, has been believed to induce neuronal differentiation at the expense of inhibiting astrocytic and oligodendrocytic differentiation. Nevertheless, the involving mechanisms of it remain unclear yet. In the present study, we explored the global gene expression changes of fetus rat hippocampal neural stem cells following VPA treatment by high‐throughput microarray. We obtained 874 significantly upregulated genes and 258 obviously downregulated genes (fold change > 2 and P < 0.05). Then, we performed gene ontology and pathway analyses of these differentially expressed genes and chose several genes associated with nervous system according to gene ontology analysis to conduct expression analysis to validate the reliability of the array results as well as reveal possible mechanisms of VPA. To get a better comprehension of the differentially regulated genes by VPA, we conducted protein–protein association analysis of these genes, which offered a source for further studies. In addition, we made the overlap between the VPA‐downregulated genes and the predicted target genes of VPA‐upregulated microRNAs (miRNAs), which were previously demonstrated. These overlapped genes may provide a source to find functional VPA/miRNA/mRNA axes during neuronal differentiation. This study first constructed a comprehensive potential downstream gene map of VPA in the process of neuronal differentiation. 相似文献
15.
Dandan Zhang Bingqiao Shen Yi Zhang Ni Ni Yuyao Wang Xianqun Fan Hao Sun Ping Gu 《Journal of cellular and molecular medicine》2018,22(1):330-345
Retinal progenitor cells (RPCs) hold great potential for the treatment of retinal degenerative diseases. However, their proliferation capacity and differentiation potential towards specific retinal neurons are limited, which limit their future clinical applications. Thus, it is important to improve the RPCs’ ability to proliferate and differentiate. Currently, epidermal growth factor (EGF) is commonly used to stimulate RPC growth in vitro. In this study, we find that betacellulin (BTC), a member of the EGF family, plays important roles in the proliferation and differentiation of RPCs. Our results showed that BTC can significantly promote the proliferation of RPCs more efficiently than EGF. EGF stimulated RPC proliferation through the EGFR/ErbB2‐Erk pathway, while BTC stimulated RPC proliferation more powerfully through the EGFR/ErbB2/ErbB4‐Akt/Erk pathway. Meanwhile, under differentiated conditions, the BTC‐pre‐treated RPCs were preferentially differentiated into retinal neurons, including photoreceptors, one of the most important types of cells for retinal cell replacement therapy, compared to the EGF‐pre‐treated RPCs. In addition, knockdown of endogenous BTC expression can also obviously promote RPC differentiation into retinal neuronal cells. This data demonstrate that BTC plays important roles in promoting RPC proliferation and differentiation into retinal neurons. This study may provide new insights into the study of RPC proliferation and differentiation and make a step towards the application of RPCs in the treatment of retinal degenerative diseases. 相似文献
16.
17.
18.
I. A. Kostanyan S. S. Zhokhov M. V. Astapova S. M. Dranitsyna A. P. Bogachuk L. K. Baidakova I. L. Rodionov I. I. Baskin O. N. Golubeva J. Tombran-Tink V. M. Lipkin 《Russian Journal of Bioorganic Chemistry》2000,26(9):505-511
It was shown that the full-size neurotrophic factor from pigment epithelium (PEDF) induces the cell differentiation of the
human promyelocyte leukemia cell line HL-60. A structural analysis of PEDF revealed in itsC-terminal region a six-membered peptide fragment PEDF-(352-357) (PEDF-6) whose sequence is highly homologous to the 41–46
fragment of the active site of the human leukocyte differentiation factor HLDF (HLDF-6). The biological effect of PEDF and
synthetic peptides PEDF-6 and HLDF-6 on the HL-60 cells and the early gastrula ectoderm ofXenopus laevis embryos was studied. On the basis of the structural and functional homologies of HLDF, PEDF, and their homologous peptides
and the computer models of the spatial structures of the full-size PEDF and the PEDF with theC-terminal fragment split off tby the cleavage of the Leu380-Thr381 bond in the serpin loop, a hypothesis on the functional role of the serpin loop in PEDF was put forward. 相似文献
19.
Retinal ganglion cell (RGC) survival and neurite outgrowth were investigated in retinal explants from adult rats. Neutrotrophin-4/5 (NT-4/5) caused dose-dependent increases in neurite outgrowth with one-half maximal effects at approximately 0.5 ng/ml and maximal effects at 5 ng/ml. In explants treated for 7 days, the actions of NT-4/5 were similar to those of brain-derived neurotrophic factor (BDNF); with either neurotrophin, nearly twice as many RGCs survived and there was a two- to threefold increase in the number of neurites formed by RGCs. Combinations of saturating concentrations of NT-4/5 and BDNF did not enhance these in vitro effects, implying that both neurotrophins share a common signaling pathway. In contrast, nerve growth factor (NGF), neurotrophin-3 (NT-3), or ciliary nuerotrophic factor (CNTF) appeared to exert minimal influences on RGC survival or neurite outgrowth. 1994 John Wiley & Sons, Inc. 相似文献
20.