首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Similar to language acquisition by human infants, juvenile male zebra finches (Taeniopygia guttata) imitate an adult (tutor) song by transitioning from repetitive production of one or two undifferentiated protosyllables to the sequential production of a larger and spectrally heterogeneous set of syllables. The primary motor region that controls learned song is driven by a confluence of input from two premotor pathways: a posterior pathway that encodes the adult song syllables and an anterior pathway that includes a basal ganglia (BG)‐thalamo‐cortical circuit. Similar to mammalian motor‐learning systems, the songbird BG circuit is thought to be necessary for shaping juvenile vocal behaviour (undifferentiated protosyllables) toward specific targets (the tutor's song syllables). Here, we tested the hypothesis that anterior pathway activity contributes to the process of protosyllable differentiation. Bilateral ablation of lateral magnocellular nucleus of the anterior nidopallium (LMAN) was used to disconnect BG circuitry at ages before protosyllable production and differentiation. Comparison to surgical controls revealed that protosyllables fail to differentiate in birds that received juvenile LMAN ablation—the adult songs of birds with >80% bilateral LMAN ablation consisted of only one or two syllables produced with the repetitive form and spectral structure that characterizes undifferentiated protosyllables in normal juveniles. Our findings support a role for BG circuitry in shaping juvenile vocal behaviour toward the acoustic structure of the tutor song and suggest that posterior pathway function remains in an immature “default” state when developmental interaction with the anterior pathway is reduced or eliminated. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 574–590, 2014  相似文献   

2.
Birdsong is a learned vocal behavior used in intraspecific communication. The motor pathway serving learned vocalizations includes the forebrain nuclei NIf, HVC, and RA; RA projects to midbrain and brain stem areas that control the temporal and acoustic features of song. Nucleus Uvaeformis of the thalamus (Uva) sends input to two of these forebrain nuclei (NIf and HVC) but has not been thought to be important for song production. We used three experimental approaches to reexamine Uva's function in adult male zebra finches. (1) Electrical stimulation applied to Uva activated HVC and the vocal motor pathway, including tracheosyringeal motor neurons that innervate the bird's vocal organ. (2) Bilateral lesions of Uva including the dorso-medial portion of the nucleus affected the normal temporal organization of song. (3) Chronic multiunit recordings from Uva during normal song and calls show bursts of premotor activity that lead the onset of some song components, and also larger bursts that mark the end of complete song motifs. These results implicate Uva in the production of learned vocalizations, and further suggest that Uva contributes more to the temporal structure than to the acoustic characteristics of song. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Unlearned calls are produced by all birds whereas learned songs are only found in three avian taxa, most notably in songbirds. The neural basis for song learning and production is formed by interconnected song nuclei: the song control system. In addition to song, zebra finches produce large numbers of soft, unlearned calls, among which “stack” calls are uttered frequently. To determine unequivocally the calls produced by each member of a group, we mounted miniature wireless microphones on each zebra finch. We find that group living paired males and females communicate using bilateral stack calling. To investigate the role of the song control system in call-based male female communication, we recorded the electrical activity in a premotor nucleus of the song control system in freely behaving male birds. The unique combination of acoustic monitoring together with wireless brain recording of individual zebra finches in groups shows that the neuronal activity of the song system correlates with the production of unlearned stack calls. The results suggest that the song system evolved from a brain circuit controlling simple unlearned calls to a system capable of producing acoustically rich, learned vocalizations.  相似文献   

4.
Songbirds learn their songs by trial-and-error experimentation, producing highly variable vocal output as juveniles. By comparing their own sounds to the song of a tutor, young songbirds gradually converge to a stable song that can be a remarkably good copy of the tutor song. Here we show that vocal variability in the learning songbird is induced by a basal-ganglia-related circuit, the output of which projects to the motor pathway via the lateral magnocellular nucleus of the nidopallium (LMAN). We found that pharmacological inactivation of LMAN dramatically reduced acoustic and sequence variability in the songs of juvenile zebra finches, doing so in a rapid and reversible manner. In addition, recordings from LMAN neurons projecting to the motor pathway revealed highly variable spiking activity across song renditions, showing that LMAN may act as a source of variability. Lastly, pharmacological blockade of synaptic inputs from LMAN to its target premotor area also reduced song variability. Our results establish that, in the juvenile songbird, the exploratory motor behavior required to learn a complex motor sequence is dependent on a dedicated neural circuit homologous to cortico-basal ganglia circuits in mammals.  相似文献   

5.
The songs of adult male zebra finches (Taeniopygia guttata) arise by an integration of activity from two neural pathways that emanate from the telencephalic nucleus HVC (proper name). One pathway descends directly from HVC to the vocal premotor nucleus RA (the robust nucleus of the arcopallium) whereas a second pathway descends from HVC into a basal ganglia circuit (the anterior forebrain pathway, AFP) that also terminates in RA. Although HVC neurons that project directly to RA outnumber those that contribute to the AFP, both populations are distributed throughout HVC. Thus, partial ablation (microlesion) of HVC should damage both pathways in a proportional manner. We report here that bilateral HVC microlesions in adult male zebra finches produce an immediate loss of song stereotypy from which birds recover, in some cases within 3 days. The contribution of the AFP to the onset of song destabilization was tested by ablating the output nucleus of this circuit (LMAN, the lateral magnocellular nucleus of the anterior nidopallium) prior to bilateral HVC microlesions. Song stereotypy was largely unaffected. Together, our findings suggest that adult vocal production involves nonproportional integration of two streams of neural activity with opposing effects on song--HVC's direct projection to RA underlies production of stereotyped song whereas the AFP seems to facilitate vocal variation. However, the rapid recovery of song in birds with HVC microlesions alone suggests the presence of dynamic corrective mechanisms that favor vocal stereotypy.  相似文献   

6.
Song development and song pattern formation in oscine songbirds are influenced by steroid hormones such as estrogens and androgens, and the control of vocal pattern generation is mediated via a network of interconnected vocal and respiratory nuclei. The main components of the respiratory part of the network are the expiratory and inspiratory premotor nuclei, known as retroambigualis (RAm) and the rostral ventral respiratory group (rVRG), respectively. These respiratory components play an integral role in song production either by providing the expiratory pulses of air required for each and every song syllable, or by controlling inspiration between syllables in the form of minibreaths, and between phrases for major replenishments of air. Here we analyze the distribution of androgen receptors (AR) and estrogen receptors (ER) in the midbrain and hindbrain of male and female zebra finches, and male canaries and green finches, using in situ hybridization with cRNA probes of the zebra finch AR and ER. ERmRNA was not expressed in any of the respiratory-vocal nuclei of the midbrain or hindbrain, but ARmRNA was expressed in the tracheosyringeal motor nucleus (nXIIts) and in RAm and rVRG. The size of the ARmRNA defined RAm and rVRG was similar in male and female zebra finches, but the size of ARmRNA defined nXIIts was slightly sexual dimorphic. Previously undescribed areas of ARmRNA expression outside the respiratory-vocal network in the brain stem were the nucleus semilunaris and layers 10–12 of the optic tectum. ARmRNA expression in the respiratory-vocal nuclei of adult male songbirds, adult female zebra finches, and juvenile zebra finches suggests that the temporal pattern of learned and unlearned vocalizations is sensitive to androgen-dependent mechanisms mediated by RAm and rVRG. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 865–876, 1997  相似文献   

7.
Tschida KA  Mooney R 《Neuron》2012,73(5):1028-1039
Hearing loss prevents vocal learning and causes learned vocalizations to deteriorate, but how vocalization-related auditory feedback acts on neural circuits that control vocalization remains poorly understood. We deafened adult zebra finches, which rely on auditory feedback to maintain their learned songs, to test the hypothesis that deafening modifies synapses on neurons in a sensorimotor nucleus important to song production. Longitudinal in vivo imaging revealed that deafening selectively decreased the size and stability of dendritic spines on neurons that provide input to a striatothalamic pathway important to audition-dependent vocal plasticity, and changes in spine size preceded and predicted subsequent vocal degradation. Moreover, electrophysiological recordings from these neurons showed that structural changes were accompanied by functional weakening of both excitatory and inhibitory synapses, increased intrinsic excitability, and changes in spontaneous action potential output. These findings shed light on where and how auditory feedback acts within sensorimotor circuits to shape learned vocalizations.  相似文献   

8.
In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.  相似文献   

9.
Male zebra finches learn to sing during a restricted phase of juvenile development. Song learning is characterized by the progressive modification of unstable song vocalizations by juvenile birds during development, a process that leads to the production of stereotyped vocal patterns as birds reach adulthood. The medial magnocellular nucleus of the anterior neostriatum (mMAN) is a small cortical region that has been implicated in song behavior based on its neuronal projection to the High Vocal Center (HVC), a nucleus that is critical for adult vocal production and presumably also plays a role in song learning. To assess the function of mMAN in song, ibotenic acid lesions of this brain region were made in juvenile male zebra finches during the period of vocal learning (40-50 days of age) and in adult males that were producing stable song (>90 days of age). Birds lesioned as juveniles produced highly abnormal, poor quality song as adults. Although the overall song quality of birds lesioned as adults was not highly disrupted or abnormal, the postoperative song behavior of these birds was discernibly different due to slight increases in variability of vocal production, particularly at the onset of singing. These results demonstrate that mMAN plays some important role in vocal production during the sensitive period for song learning, and is also important for consistent initiation and stereotyped production of adult song behavior.  相似文献   

10.
Male zebra finches learn to imitate a tutor's song through auditory and motor learning. The two main song control nuclei in the zebra finch forebrain, the higher vocal center (HVC) and the robust nucleus of the archistriatum (RA), receive cholinergic innervation from the ventral paleostriatum (VP) of the basal forebrain which may play a key role in song learning. By injecting neuroanatomical tracers, we found a topographically segregated pathway from nucleus ovoidalis (Ov) to VP that in turn projects in a topographic fashion to HVC and RA. Ov is a major relay in the main ascending auditory pathway. The results suggest that the cholinergic neurons in the VP responsible for song learning are regulated by auditory information from the Ov.  相似文献   

11.
《Journal of Physiology》2013,107(3):178-192
Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans.  相似文献   

12.
A discrete neural circuit mediates the production of learned vocalizations in oscine songbirds. Although this circuit includes some bilateral pathways at midbrain and medullary levels, the forebrain components of the song control network are not directly connected across the midline. There have been no previous reports of bilateral projections from medullary and midbrain vocal control nuclei back to the forebrain song system, but the existence of such bilateral corollary discharge pathways was strongly suggested by the recent observation that unilateral stimulation of a forebrain song nucleus during singing leads to a rapid readjustment of premotor activity in the contralateral forebrain. In the present study, we used neuroanatomical tracers to demonstrate bilateral projections from (a) the rostral ventrolateral medulla (RVL), which may control respiratory aspects of vocalization, to nucleus uvaeformis (Uva), and (b) the dorsomedial intercollicular nucleus (DM), a midbrain vocal control region, to Uva. Both RVL and DM receive descending projections from the forebrain song nucleus robustus archistriatalis, and Uva projects directly to the forebrain song nuclei interfacialis and high vocal center. We suggest that the bilateral feedback projections from DM and RVL to Uva function to coordinate the two hemispheres during singing in adult songbirds and to convey internal feedback of premotor signals to the forebrain in young birds that are learning to sing. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 27–40, 1998  相似文献   

13.
Practice makes perfect, but the neural substrates of trial-to-trial learning in motor tasks remain unclear. There is some evidence that the basal ganglia process feedback-related information to modify learning in essentially cognitive tasks , but the evidence that these key motor structures are involved in offline feedback-related improvement of performance in motor tasks is paradoxically limited. Lesion studies in adult zebra finches suggest that the avian basal ganglia are involved in the transmission or production of an error signal during song . However, patients with Huntington's disease, in which there is prominent basal ganglia dysfunction, are not impaired in error-dependent modulation of future trial performance . By directly recording from the subthalamic nucleus in patients with Parkinson's disease, we demonstrate that this nucleus processes error in trial performance at short latency. Local evoked activity is greatest in response to smallest errors and influences the programming of subsequent movements. Accordingly, motor parameters are least likely to change after the greatest evoked responses so that accurately performed trials tend to precede other accurate trials. This relationship is disrupted by electrical stimulation of the nucleus at high frequency. Thus, the human subthalamic nucleus is involved in feedback-based learning.  相似文献   

14.
Stereotyped sequences of neural activity underlie learned vocal behavior in songbirds; principle neurons in the cortical motor nucleus HVC fire in stereotyped sequences with millisecond precision across multiple renditions of a song. The geometry of neural connections underlying these sequences is not known in detail though feed-forward chains are commonly assumed in theoretical models of sequential neural activity. In songbirds, a well-defined cortical-thalamic motor circuit exists but little is known the fine-grain structure of connections within each song nucleus. To examine whether the structure of song is critically dependent on long-range connections within HVC, we bilaterally transected the nucleus along the anterior-posterior axis in normal-hearing and deafened birds. The disruption leads to a slowing of song as well as an increase in acoustic variability. These effects are reversed on a time-scale of days even in deafened birds or in birds that are prevented from singing post-transection. The stereotyped song of zebra finches includes acoustic details that span from milliseconds to seconds--one of the most precise learned behaviors in the animal kingdom. This detailed motor pattern is resilient to disruption of connections at the cortical level, and the details of song variability and duration are maintained by offline homeostasis of the song circuit.  相似文献   

15.
Neuronal activity within the premotor region HVC is tightly synchronized to, and crucial for, the articulate production of learned song in birds. Characterizations of this neural activity detail patterns of sequential bursting in small, carefully identified subsets of neurons in the HVC population. The dynamics of HVC are well described by these characterizations, but have not been verified beyond this scale of measurement. There is a rich history of using local field potentials (LFP) to extract information about behavior that extends beyond the contribution of individual cells. These signals have the advantage of being stable over longer periods of time, and they have been used to study and decode human speech and other complex motor behaviors. Here we characterize LFP signals presumptively from the HVC of freely behaving male zebra finches during song production to determine if population activity may yield similar insights into the mechanisms underlying complex motor-vocal behavior. Following an initial observation that structured changes in the LFP were distinct to all vocalizations during song, we show that it is possible to extract time-varying features from multiple frequency bands to decode the identity of specific vocalization elements (syllables) and to predict their temporal onsets within the motif. This demonstrates the utility of LFP for studying vocal behavior in songbirds. Surprisingly, the time frequency structure of HVC LFP is qualitatively similar to well-established oscillations found in both human and non-human mammalian motor areas. This physiological similarity, despite distinct anatomical structures, may give insight into common computational principles for learning and/or generating complex motor-vocal behaviors.  相似文献   

16.
In adulthood, songbird species vary considerably in the extent to which they rely on auditory feedback to maintain a stable song structure. The continued recruitment of new neurons into vocal motor circuitry may contribute to this lack of resiliency in song behavior insofar as new neurons that are not privy to auditory instruction could eventually corrupt established neural function. In a first step to explore this possibility, we used a comparative approach to determine if species differences in the rate of vocal change after deafening in adulthood correlate positively with the extent of HVc neuron addition. We confirmed previous reports that deafening in adulthood changes syllable phonology much more rapidly in bengalese finches than in zebra finches. Using [(3)H]thymidine autoradiography to identify neurons generated in adulthood, we found that the proportion of new neurons in the HVc one month after labeling was nearly twice as great in bengalese than in zebra finches. Moreover, among the subset of HVc vocal motor neurons that project to the robust nucleus of the archistriatum, the incidence of [(3)H]thymidine-labeled neurons was nearly three times as great in bengalese than in zebra finches. This correlation between the proportion of newly added neurons and the rate of song deterioration supports the hypothesis that HVc neuron addition may disrupt stable adult song production if new neurons cannot be "trained" via auditory feedback.  相似文献   

17.
Telencephalic nucleus HVC and its two efferent targets, RA and X, play essential roles in the production of complex, learned vocalizations in the male zebra finch. Normal females do not produce these learned vocalizations; HVC, RA, and X are small in volume, and HVC and RA are not synaptically connected. We have shown that estrogen treatment during development causes females to learn and produce male-like vocalizations. This article describes the neural masculinization of these E2 females, replicating and extending the work of others. Female zebra finches were treated with 17 beta-estradiol (E2) at hatching, at 14-22 days of age, or as adults. In adulthood, the volumes of nucleus RA and area X were measured and the efferent projections of nucleus HVC examined using the anterograde tracer PHA-L. Early, sustained E2 treatment caused the greatest increase in the volume of RA and X, the innervation of RA and X by HVC axons, and the masculinization of auditory responses of cells in RA. Treatments that lasted for a shorter period or started later in development resulted in different patterns of partial brain masculinization. E2 treatment in adulthood had no effect on the volume of RA or X or their innervation by HVC. Bilateral lesions of the tracheosyringeal nerves or of HVC had the same effects on the male-typical vocalizations produced by E2 females as they do on the vocalizations produced by males. These results demonstrate that the neural masculinization of telencephalic nuclei induced by E2 treatment sets up a functional circuit in females similar to one in males that enables the learning and production of complex vocalizations.  相似文献   

18.
Telencephalic nucleus HVC and its two efferent targets, RA and X, play essential roles in the production of complex, learned vocalizations in the male zebra finch. Normal females do not produce these learned vocalizations; HVC, RA, and X are small in volume, and HVC and RA are not synaptically connected. We have shown that estrogen treatment during development causes females to learn and produce male-like vocalization. This article describes the neural masculinization of these E2 females, replicating and extending the work of others. Female zebra finches were treated with 17β-estradiol (E2) at hatching, at 14–22 days of age, or as adults. In adulthood, the volumes of nucleus RA and area X were measured and the efferent projections of nucleus HVC examined using the anterograde tracer PHA-L. Early, sustained E2 treatment caused the greatest increase in the volume of RA and X, the innervation of RA and X by HVC axons, and the masculinization of auditory responses of cells in RA. Treatments that lasted for a shorter period or started later in development resulted in different patterns of partial brain masculinization. E2 treatment in adulthood had no effect on the volume of RA or X or their innervation by HVC. Bilateral lesions of the tracheosyringeal nerves or of HVC had the same effects on the male-typical vocalizations produced by E2 females as they do on the vocalizations produced by males. These results demonstrate that the neural masculinization of telencephalic nuclei induced by E2 treatment sets up a functional circuit in females similar to one in males that enables the learning and production of complex vocalizations.  相似文献   

19.
The zebra finch acquires its song by first memorizing a model song from a tutor and then matching its own vocalizations to the memory trace of the tutor song, called a template. Neural mechanisms underlying this process require a link between the neural memory trace and the premotor song circuitry, which drives singing. We now report that a premotor song nucleus responds more to the tutor song model than to every other stimulus examined, including the bird's own song (BOS). Neural tuning to the song model occurred only during waking and peaked during the template-matching period of development, when the vocal motor output is sculpted to match the tutor song. During the same developmental phase, the BOS was the most effective excitatory stimulus during sleep. The preference for BOS compared to tutor song inverted with sleep/wake state. Thus, song preference shifts with development and state.  相似文献   

20.
Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号