首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
New Zealand has experienced a complex climatic and geological history since the Pliocene. Thus, identifying the processes most important in having driven the evolution of New Zealand's biota has proven difficult. Here we examine the phylogeography of the New Zealand common skink ( Oligosoma nigriplantare polychroma ) which is distributed throughout much of New Zealand and crosses many putative biogeographical boundaries. Using mitochondrial DNA sequence data, we revealed five geographically distinct lineages that are highly differentiated (pairwise ΦST 0.54–0.80). The phylogeographical pattern and inferred age of the lineages suggests Pliocene mountain building along active fault lines promoted their divergence 3.98–5.45 million years ago. A short interspersed nuclear element (SINE) polymorphism in the myosin gene intron ( MYH-2 ) confirmed a pattern of restricted gene flow between lineages on either side of the mountain ranges associated with the Alpine Fault that runs southwest to northeast across the South Island of New Zealand. An analysis of molecular variance confirmed that ~40% of the genetic differentiation in O. n. polychroma is distributed across this major fault line. The straits between the main islands of New Zealand accounted for much less of the variation found within O. n. polychroma , most likely due to the repeated existence of landbridges between islands during periods of the Pleistocene that allowed migration. Overall, our findings reveal the relative roles of different climatic and geological processes, and in particular, demonstrate the importance of the Alpine Fault in the evolution of New Zealand's biota.  相似文献   

2.
《新西兰生态学杂志》2011,24(2):153-160
Baited pitfall traps were used to sample Oligosoma maccanni and Oligosoma nigriplantare polychroma at Birdlings Flat, on Kaitorete Spit, Canterbury, New Zealand. The two species of skink showed distinctive patterns of habitat use with O. maccanni being almost entirely confined to dunelands while O. n. polchroma was invariably captured in the shrub-covered terraces behind the dunes. This is in direct contrast to what has been documented for these species in central Otago. Habitat partitioning appears to have also influenced the patterning and colouration of the two species which is also opposite to what has been documented for these species in Central Otago. Other factors examined did not show the same degree of deviation from what has been documented for these species elsewhere. The Birdlings Flat populations of O. maccanni and O. n. polychroma are diurnally active summer breeders, and dietary generalists.  相似文献   

3.
A lizard assemblage at Macraes Flat, New Zealand, comprising the common skinks Oligosoma maccanni and Oligosoma nigriplantare polychroma, the endangered species Oligosoma grande and Oligosoma otagense, and the common gecko Hoplodactylus maculatus, was studied to determine the prevalence of ectoparasites and hemoparasites. The mites Odontacarus lygosomae and Ophionyssus scincorum infected all Oligosoma spp. only, and the mite Neotrombicula naultini infected only H. maculatus. The hemoparasite Hepatozoon lygosomarum infected all Oligosoma skinks, except O. n. polychroma. Oligosoma otagense had the highest infection levels of all parasites by several orders of magnitude. For all lizard species, there was no difference in mite prevalence between adult males and adult females, but juveniles were less often infected. For all skink species, there was a significant relationship between presence of the hemoparasite He. lygosomarum and infection intensity of the supposed vector, O. scincorum. It is unclear if patterns of parasite infection reflect species-specific susceptibility, host-parasite species-specific spatial ecology, or environmentally induced host physiological impairment. Considering the threatened nature of O. otagense, evidence of high parasitemia should stimulate further investigation.  相似文献   

4.
《新西兰生态学杂志》2011,33(2):205-207
The stomach contents of 158 hedgehogs captured at Macraes Flat, Otago, New Zealand, over two summers in 2000 and 2001 were examined for the occurrence of lizards. The remains of at least 43 skinks (both Oligosoma nigriplantare polychroma and O.?maccanni) and one gecko (Hoplodactylus sp.) were found. Twenty-one percent (n?=?33; 8 males and 25 females) of the examined hedgehogs had fed on skinks. Female hedgehogs ate significantly more skinks than did males. Our results suggest that the presence of large numbers of hedgehogs can have a high impact on native reptile populations in New Zealand and therefore they should be targeted in future trapping programmes.  相似文献   

5.
The evolutionary history of 25 New Zealand scincid lizards in the endemic genera Oligosoma and Cyclodina was examined using 12S rRNA sequence data. Phylogenetic resolution was poor, despite there being up to 9% sequence divergence between taxa. Lack of resolution was not attributable to biases in the data, such as site saturation or differences in sites free to vary, so we infer that New Zealand skinks underwent two relatively rapid phases of divergence. The rate of substitution for the skink sequences appears to be similar to some bird and mammal groups for which times of divergence have been estimated. Using fhese calibrations diversification of Oligosoma skinks probably began at least 23 million years ago (Mya). The pattern of relationships and the timing of this diversification are interpreted as resulting from rapid allopatric speciation during the Oligocene (25–35 Mya) when New Zealand was fragmented into many low lying islands. A second major phase of speciation involving the Cyclodina seems to have occurred during the Miocene (15–24 Mya), probably as a consequence of increasing land area and habitat diversity. This pattern of skink evolution contrasts with the Oligocene 'environmental crisis' hypodiesis of Cooper & Cooper (Proc. R. Soc. Land. B. 261, 293–302), but can be attributed to differences in the ecology of different taxa. This can be tested by examination of other groups, such as land snails and geckos. The large number of lizard species in New Zealand can be considered a legacy both of past geography as well as the absence of small mammals which would have been both competitors and predators.  相似文献   

6.
Abstract

We describe a new skink species (Oligosoma taumakae sp. nov.) from the Open Bay Islands, New Zealand. This species is diagnosed on the basis of several morphological characteristics, and its specific status is supported by mitochondrial sequence data (ND2, ND4). The new species appears to be most closely related to O. acrinasum, O. infra‐punctatum, O. otagense and O. waimatense. The new taxon appears to be rare and endemic to the island of Taumaka in the Open Bay Islands (off the west coast of the South Island). Predation by a flightless rail (weka, Gallirallus australis), native to New Zealand but introduced to the Open Bay Islands, is a major conservation concern.  相似文献   

7.
Aim The New Zealand avifauna includes lineages that lack close relatives elsewhere and have low diversity, characteristics sometimes ascribed to long geographic isolation. However, extinction at the population and species levels could yield the same pattern. A prominent example is the ecologically important pigeon genus Hemiphaga. In this study, we examined the population structure and phylogeography of Hemiphaga across islands in the region. Location New Zealand, Chatham Islands and Norfolk Island. Methods Mitochondrial DNA was sequenced for all species of the genus Hemiphaga. Sixty‐seven individuals from mainland New Zealand (Hemiphaga novaeseelandiae novaeseelandiae), six of the Chatham Islands sister species (Hemiphaga chathamensis), and three of the extinct Norfolk Island subspecies (Hemiphaga novaeseelandiae spadicea) were included in this study. Novel D‐loop and cytochrome b primers were designed to amplify DNA from museum samples. Additionally, five other mitochondrial genes were used to examine placement of the phylogenetic root. Results Analyses of mitochondrial DNA sequences revealed three Hemiphaga clades, consistent with the allopatric populations of recognized (sub)species on oceanic islands. Of the 23 D‐loop haplotypes among 67 New Zealand pigeons (Hemiphaga n. novaeseelandiae), 19 haplotypes were singletons and one haplotype was common and widespread. Population genetic diversity was shallow within and between New Zealand populations, indicating range expansion with high inter‐population exchange. Tentative rooting of the Hemiphaga clade with cyt b data indicates exchange between mainland New Zealand and the Chatham Islands prior to colonization of Norfolk Island. We found low genetic divergence between populations on New Zealand, the Chatham Islands and Norfolk Island, but deep phylogenetic divergence from the closest living relatives of Hemiphaga. Main conclusions The data are consistent with the hypothesis of population reduction during the Pleistocene and subsequent expansion from forest refugia. Observed mobility of Hemiphaga when feeding helps explain the shallow diversity among populations on islands separated by many hundreds of kilometres of ocean. Together with comparison of distribution patterns observed among birds of the New Zealand region, these data suggest that endemicity might represent not long occupancy of an area, but descent from geologically recent colonizations. We consider the role of lineage pruning in creating the impression of old endemicity.  相似文献   

8.
《新西兰生态学杂志》2011,33(2):156-163
We used a comparative approach to investigate heteroblasty in the Chatham Islands. Heteroblasty refers to abrupt changes in the morphology of leaves and shoots with plant height. Common on isolated islands such as New Caledonia and New Zealand, which once had flightless, browsing birds, heteroblasty is hypothesised to be an adaptation to deter bird browsing. The Chatham Islands are a small archipelago located 800 km off the east coast of New Zealand, which has clear floristic links to New Zealand. However, unlike New Caledonia and New Zealand, the Chathams never had flightless, browsing birds. We investigated heteroblasty on the Chatham Islands by: (1) comparing height-related changes in leaf morphology and branching architecture in several plant taxa with heteroblastic relatives on the New Zealand mainland; (2) characterising changes in leaf morphology in heteroblastic tree species endemic to the Chathams; and (3) comparing overall trends in leaf heteroblasty on the Chathams with New Caledonia and New Zealand. Reversions to homoblasty were observed in the three Chatham Island taxa with heteroblastic relatives on the New Zealand mainland. However, two endemic tree species were clearly heteroblastic; both produced dramatically larger leaves as juveniles than as adults. Inter-archipelago comparisons showed that this trend in leaf morphology is rare among heteroblastic species in New Caledonia and New Zealand. Therefore, while some of our results were consistent with the hypothesis that heteroblasty is an adaptation to avoid bird browsing, other processes also appear to have shaped the expression of heteroblasty on Chatham Island.  相似文献   

9.
The New Zealand skink fauna has proven to be an ideal taxonomic group in which to examine the impact of climatic and geological processes on the evolution of the New Zealand biota since the Pliocene. Here we examine the phylogeography of McCann's skink (Oligosoma maccanni) in order to gain insight into the relative contribution of Pliocene and Pleistocene processes on patterns of genetic structure in the South Island biota, and investigate the phylogeography of the brown skink (O. zelandicum) to examine whether Cook Strait landbridges facilitated geneflow between the North and South Islands in the late-Pleistocene. We obtained mitochondrial DNA sequence data (ND2 and ND4; 1282bp) from across the range of both species. We examined the phylogeographic patterns evident in each species using Neighbour-Joining, Maximum Likelihood and Bayesian methods. We found substantial phylogeographic structure within O. maccanni, with seven distinct clades identified. Divergences among clades are estimated to have occurred during the Pliocene. Populations in the Otago/Southland region (south of the Waitaki River valley) formed a well-supported lineage within O. maccanni. A substantial genetic break was evident between populations in east and west Otago, either side of the Nevis-Cardrona fault system, while north-south genetic breaks were evident within the Canterbury region. Within-clade divergences in O. maccanni appear to have occurred during the mid- to late-Pleistocene. Shimodaira-Hasegawa topology tests indicated that the 'Garston' skink is not genetically distinct from O. maccanni. There was only relatively minor phylogeographic structure within O. zelandicum, with divergences among populations occurring during the mid- to late-Pleistocene. Our genetic data supports a single colonisation of the North Island by O. zelandicum from the South Island, with the estimated timing of this event (0.46mya) consistent with the initial formation of Cook Strait.  相似文献   

10.
Aim We examined the biogeography of three freshwater isopod species (Austridotea annectens, A. lacustris, A. benhami), and tested the hypotheses that genetic differences would: (1) exist between geographic locations; and (2) correspond to known geological events (e.g. appearance of islands leading to the availability of habitat). Location Southern New Zealand, including South Island, Stewart Island, Campbell Island and Chatham Islands. Methods We examined specimens throughout the known species range from 12 populations of A. lacustris, five populations of A. annectens, and three populations of A. benhami, using mitochondrial DNA (cytochrome c oxidase I) sequence analyses. Results We resolved three main clades corresponding to the three species, with 16% sequence divergence between A. annectens and A. benhami, and 31% divergence between these species and A. lacustris. Divergence within A. benhami was < 2.0%. However, divergence within A. lacustris reached up to 10% with four main groupings: (1) Chatham Islands; (2) Campbell Island; (3) Fiordland; and (4) east coast South Island and Stewart Island. Divergence within A. annectens reached up to 4.4%, with two main groupings: (1) Chatham Islands and (2) east coast South Island and Stewart Island. Patterns of genetic divergence were most likely the result of geographical isolation among A. lacustris and A. annectens populations. In particular, the divergence of A. lacustris and A. annectens on Chatham Islands may correspond to the availability of this habitat c. 4 Ma, whereas the divergence of A. lacustris on the much older Campbell Island and in Fiordland may indicate either a rare founder event or a change in ocean circulation that resulted in their isolation from a once more widespread gene pool. Main conclusions The three New Zealand species of Austridotea are genetically distinct, with up to 31% divergence between species. Genetic variability was highest between populations of the two most widely distributed species, and divergence was greatest on islands distant from mainland New Zealand and in the discrete Fiordland region. The magnitude of genetic divergence of isopods on the Auckland and Chatham Islands is consistent with these populations having been founded in the Pliocene via oceanic dispersal from mainland New Zealand.  相似文献   

11.
The Hawaiian archipelago is often cited as the premier setting to study biological diversification, yet the evolution and phylogeography of much of its biota remain poorly understood. We investigated crab spiders (Thomisidae, Mecaphesa ) that demonstrate contradictory tendencies: (i) dramatic ecological diversity within the Hawaiian Islands, and (ii) accompanying widespread distribution of many species across the archipelago. We used mitochondrial and nuclear genetic data sampled across six islands to generate phylogenetic hypotheses for Mecaphesa species and populations, and included penalized likelihood molecular clock analyses to estimate arrival times on the different islands. We found that 17 of 18 Hawaiian Mecaphesa species were monophyletic and most closely related to thomisids from the Marquesas and Society Islands. Our results indicate that the Hawaiian species evolved from either one or two colonization events to the archipelago. Estimated divergence dates suggested that thomisids may have colonized the Hawaiian Islands as early as ~10 million years ago, but biogeographic analyses implied that the initial diversification of this group was restricted to the younger island of Oahu, followed by back-colonizations to older islands. Within the Hawaiian radiation, our data revealed several well-supported genetically distinct terminal clades corresponding to species previously delimited by morphological taxonomy. Many of these species are codistributed across multiple Hawaiian Islands and some exhibit genetic structure consistent with stepwise colonization of islands following their formation. These results indicate that dispersal has been sufficiently limited to allow extensive ecological diversification, yet frequent enough that interisland migration is more common than speciation.  相似文献   

12.
Aim  It is well established that many groups of plants and animals have undergone long-distance dispersal, but the extent to which this continues beyond initial colonization is largely unknown. To provide further insight into the frequency of gene flow mediated by long-distance dispersal, we investigated the origins of the fern Asplenium hookerianum on the Chatham Islands, and present a review of the contribution of molecular data to elucidating the origins of this archipelago's biota.
Location  Chatham Islands and New Zealand. A. hookerianum is scarce on the Chatham Islands but common in New Zealand, some 800 km to the west.
Methods  We compared chloroplast trnL–trnF DNA sequence data from Chatham Islands' A. hookerianum with extensive phylogeographic data for this genetically variable species in mainland New Zealand.
Results  Our sequencing revealed the presence of two haplotypes in Chatham Islands' A. hookerianum . These haplotypes differed by four mutational events and were each more closely related to haplotypes found in New Zealand than to each other.
Main conclusions  Despite the rarity of A. hookerianum on the Chatham Islands, its populations there appear to derive from at least two long-distance dispersal events from New Zealand, these possibly originating from different areas. We suggest that long-distance transoceanic dispersal, and the gene flow it can mediate, may be more common than is generally appreciated.  相似文献   

13.
Aim Determine the phylogeny and dispersal patterns of the cicada genus Kikihia in New Zealand and the origin of the Norfolk, Kermadec, and Chatham Island cicadas. Location New Zealand, Norfolk Island, Kermadec Islands and Chatham Island. Methods DNA sequences from 16 species and four soon to be described species of cicadas from New Zealand and Norfolk Island (Australia) were examined. A total of 1401 base pairs were analysed from whole genome extraction of three mitochondrial genes (cytochrome oxidase subunit II, ATPase6 and ATPase8). These DNA sequences were aligned and analysed using standard likelihood approaches to phylogenetic analysis. Dates of divergences between clades were determined using a molecular clock based on Bayesian statistics. Results Most species in the genus Kikihia diverged between 3 and 5 million years ago (Ma) coincident with a period of rapid mountain building in New Zealand. Cicada species on the Kermadec and Norfolk Islands invaded recently from New Zealand and are closely related to the New Zealand North Island species Kikihia cutora. Main conclusions Speciation in the genus Kikihia was likely due in large part to the appearance of new habitats associated with the rise of the Southern Alps, starting c. 5 Ma. Dispersal of Kikihia species within mainland New Zealand probably occurred gradually rather than through long‐distance jumps. However, invasion of Norfolk, the Kermadecs and Chatham Islands had to have occurred through long‐distance dispersal.  相似文献   

14.
Island formation is a key driver of biological evolution, and several studies have used geological ages of islands to calibrate rates of DNA change. However, many islands are home to “relict” lineages whose divergence apparently pre‐dates island age. The geologically dynamic New Zealand (NZ) archipelago sits upon the ancient, largely submerged continent Zealandia, and the origin and age of its distinctive biota have long been contentious. While some researchers have interpreted NZ's biota as equivalent to that of a post‐Oligocene island, a recent review of genetic studies identified a sizeable proportion of pre‐Oligocene “relict” lineages, concluding that much of the biota survived an incomplete drowning event. Here, we assemble comparable genetic divergence data sets for two recently formed South Pacific archipelagos (Lord Howe; Chatham Islands) and demonstrate similarly substantial proportions of relict lineages. Similar to the NZ biota, our island reviews provide surprisingly little evidence for major genetic divergence “pulses” associated with island emergence. The dominance of Quaternary divergence estimates in all three biotas may highlight the importance of rapid biological turnover and new arrivals in response to recent climatic and/or geological disturbance and change. We provide a schematic model to help account for discrepancies between expected versus observed divergence‐date distributions for island biotas, incorporating the effects of both molecular dating error and lineage extinction. We conclude that oceanic islands can represent both evolutionary “cradles” and “museums” and that the presence of apparently archaic island lineages does not preclude dispersal origins.  相似文献   

15.
The New Zealand Pipit Anthus novaeseelandiae occurs as a single species in Europe (as Richard's Pipit), Asia, Africa, New Guinea, Australia and New Zealand. In the New Zealand region, subspecific status has been accorded to allopatric populations on the mainland (A. n. novaeseelandiae) , on the Auckland and Campbell Islands (A. n. aucklandicus) , on the Antipodes Islands (A. n. steindachneri) and on the Chatham Islands (A. n. chathamensis) . Analyses of 23 allozyme loci and morphometric variation of populations on mainland New Zealand and on the Auckland, Campbell, Antipodes and Chatham Islands showed an appreciable and significant divergence between mainland and island populations. The magnitude of the allozyme difference is sufficient to suggest full species designation for the island birds, a conclusion supported by morphometric analyses and in sharp contrast to current taxonomy. However, formal taxonomic change will not be undertaken until the two New Zealand groups have been compared with more distant populations of this wideranging genus. The cryptic variation found in this species has conservation management implications for the small offshore populations.  相似文献   

16.
We used mitochondrial cyt b sequences to investigate the phylogenetic relationships of Crocidura russula (sensu lato) populations across the Strait of Gibraltar, western Europe, Maghreb, and the Mediterranean and Atlantic islands. This revealed very low genetic divergence between European and Moroccan populations. The application of a molecular clock previously calibrated for shrews suggested that the separation of European from Moroccan lineages occurred less than 60 000 bp, which is at least 5 million years (Myr) after the reopening of the Strait of Gibraltar. This means that an overwater dispersal event was responsible for the observed phylogeographical structure. In contrast, genetic analyses revealed that Moroccan populations were highly distinct from Tunisian ones. According to the molecular clock, these populations separated about 2.2 million years ago (Ma), a time marked by sharp alternations of dry and humid climates in the Maghreb. The populations of the Mediterranean islands Ibiza, Pantelleria, and Sardinia were founded from Tunisian populations by overwater dispersal. In conclusion, overwater dispersal across the Strait of Gibraltar, probably assisted by humans, is possible for small terrestrial vertebrates. Moreover, as in Europe, Quaternary climatic fluctuations had a major effect on the phylogeographical structure of the Maghreb biota.  相似文献   

17.
Sea-level fluctuations during the Pliocene and Pleistocene have shaped the landscape of the Northland region of New Zealand. We examined the comparative phylogeography of three skink species (Oligosoma moco, O. smithi, O. suteri) in northeastern New Zealand in order to investigate the impact of the historical processes that have prevailed since the Pliocene on the Northland fauna. O. moco, O. smithi and O. suteri have similar distributions across northeastern New Zealand, frequently occurring in sympatry. We obtained sequence data from across the entire range of each species, targeting the ND2 mitochondrial gene. Using Neighbor-Joining, Maximum likelihood and Bayesian methods, our analysis revealed contrasting phylogeographic patterns in each species. We found substantial phylogeographic structure within O. moco, with three distinct clades identified. Similarly, deep phylogeographic divergence was evident within O. smithi, with three distinct clades present. Clade 1 included O. smithi populations from the Three Kings Islands and the western coastline of Northland, while Clade 2 encompassed the remainder of the range. However, since Clade 3 corresponded to a described species (O. microlepis), O. smithi might represent a species complex. In both O. moco and O. smithi, divergences among clades are estimated to have occurred in the Pliocene, with divergences within clades occurring during the Pleistocene. In contrast, genetic divergence among O. suteri populations was extremely limited and indicative of more recent divergences during the Pleistocene. The lack of phylogeographic structure in O. suteri might be a consequence of its oviparous reproductive mode, which restricted its distribution to warm northern refugia during glacial maxima. Differences in the ecology and biology of each species might have produced contrasting responses to the same historical processes, and ultimately diverse phylogeographic patterns. Our study reveals an absence of consistent and concordant phylogeographic patterns in the Northland biota, even within the same taxonomic group.  相似文献   

18.
The processes that produce and maintain genetic structure in organisms operate at different timescales and on different life‐history stages. In marine macroalgae, gene flow occurs through gamete/zygote dispersal and rafting by adult thalli. Population genetic patterns arise from this contemporary gene flow interacting with historical processes. We analyzed spatial patterns of mitochondrial DNA variation to investigate contemporary and historical dispersal patterns in the New Zealand endemic fucalean brown alga Carpophyllum maschalocarpum (Turner) Grev. Populations bounded by habitat discontinuities were often strongly differentiated from adjoining populations over scales of tens of kilometers and intrapopulation diversity was generally low, except for one region of northeast New Zealand (the Bay of Plenty). There was evidence of strong connectivity between the northern and eastern regions of New Zealand’s North Island and between the North and South Islands of New Zealand and the Chatham Islands (separated by 650 km of open ocean). Moderate haplotypic diversity was found in Chatham Islands populations, while other southern populations showed low diversity consistent with Last Glacial Maximum (LGM) retreat and subsequent recolonization. We suggest that ocean current patterns and prevailing westerly winds facilitate long‐distance dispersal by floating adult thalli, decoupling genetic differentiation of Chatham Island populations from dispersal potential at the gamete/zygote stage. This study highlights the importance of encompassing the entire range of a species when inferring dispersal patterns from genetic differentiation, as realized dispersal distances can be contingent on local or regional oceanographic and historical processes.  相似文献   

19.
Abstract

The Open Bay Island skink (Oligosoma taumakae) is one of New Zealand's rarest lizard species. Until 2010, it was known only from two small islands in the Open Bay Island Group, a Māori-owned wildlife sanctuary in South Westland, New Zealand. Skinks on these islands are threatened by predation from weka (Gallirallus australis), a flightless native rail thought to have been introduced to the Open Bay Islands c. 100 years ago. Here, we describe the discovery of Open Bay Island skinks on two vegetated rock stacks located off the coast of Barn Bay, 52 km southwest of the Open Bay Islands. Although small (c. 0.10 and 0.36 ha), the Barn Islands appear to be predator-free, providing an important sanctuary for the skinks. We recommend: (1) a survey of mainland sites with suitable habitat; and (2) an evaluation of the need for island biosecurity measures for detecting and responding to incursions of small mammals.  相似文献   

20.
《新西兰生态学杂志》2011,20(2):191-206
The distribution and abundance of lizards relative to habitat structure were studied at Pukerua Bay, Wellington between December 1982 and March 1988 in order to identify options for management of the habitat of the five species of lizards present. One species, Whitaker's skink (Cyclodina whitakeri), is a threatened species with only one known mainland population. Pitfall traps were set for 23 667 trap-days and yielded 2897 lizard captures. Highest capture rate was for common skinks (Oligosoma nigriplantare polychroma) and lowest rate was for C. whitakeri. Of the five lizard species at Pukerua Bay, C. whitakeri had the narrowest habitat range and was most sensitive to temperature extremes. These features, combined with predation, and habitat disturbance and degradation, have resulted in critically low numbers of C. whitakeri. Assessment of management options to lessen the threats to C. whitakeri concluded that risks from disturbance, predation and fire could best be minimised through a managed revegetation programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号