首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Explant and dissociated neuron-enriched cultures of nodose ganglia (inferior or distal sensory ganglion of the Xth cranial nerve) were established from chick embryos taken between embryonic Day 4 (E4) and Day 16 (E16). The response of each type of culture to nerve growth factor (NGF) was examined over this developmental range. At the earliest ages taken (E4-E6), NGF elicited modest neurite outgrowth from ganglion explants cultured in collagen gel for 24 hr, although the effect of NGF on ganglia taken from E4 chicks was only marginally greater than spontaneous neurite extension from control ganglia of the same developmental age. The response of nodose explants to NGF was maximal at E6-E7, but declined to a negligible level in ganglia taken from E9-E10 or older chick embryos. In dissociated neuron-enriched cultures, nodose ganglion neurons were unresponsive to NGF throughtout the entire developmental age range between E5 and E12. In contrast to the lack of effect of NGF, up to 50% of nodose ganglion neurons survived and produced extensive neurites in dissociated cultures, on either collagen- or polylysine-coated substrates, in the presence of extracts of late embryonic or early posthatched chick liver (E18-P7). Antiserum to mouse NGF did not block the neurotrophic activity of chick (or rat or bovine) liver extracts. Whether cultured with chick liver extract alone or with chick liver extract plus NGF, nodose ganglion neurons taken from E6-E12 chick embryos and maintained in culture for 2 days were devoid of NGF receptors, as assessed by autoradiography of cultures incubated with 125I-NGF. Under similar conditions 70-95% of spinal sensory neurons (dorsal root ganglion--DRG) were heavily labeled. 2+  相似文献   

2.
The hypothesis that peripheral, skeletal muscle tissue contains a trophic factor supporting central neurons has recently been investigated in vitro by supplementing the culture medium of spinal cord neurons with muscle extracts and fractions of extract. We extended these studies asking whether or not a trophic factor is present in peripheral nerves, the connecting link between muscle and central neurons via which factors may be translocated from muscle to neurons by the retrograde transport system. Lumbar, 8-day-old chick spinal cords were dissociated into single cells and then cultured in the presence of peripheral nerve extract. Cytosine arabinoside was added to inhibit proliferation of nonneuronal cells. In the presence of nerve extract, spinal cord neurons survived for more than a month, extended numerous neurites, and showed activity of choline acetyltransferase. In the absence of extract, neurons attached and survived for a few days but then died subsequently in less than 10 days. Neurite outgrowth did not occur in the absence of extract. Withdrawal of extract from the medium of established neuronal cultures caused progressive loss of both cells and neurites. Other tissues also contained neuron supporting activity but less than that found in nerve extract. These studies indicate that peripheral nerves contain relatively high levels of spinal cord neuron-directed trophic activity, suggesting translocation of neurotrophic factor from muscle to central target neurons. The neurotrophic factor has long-term (weeks) effects, whereas short-term (days) survival is factor independent.  相似文献   

3.
Studies were carried out in dissociated cell cultures on the nerve growth factor (NGF) requirement of chick embryo dorsal root ganglionic (DRG) neurons. Findings were: (i) The minimum level of 2.5 S NGF required to sustain the survival of maximal numbers of process-bearing cells derived from 8-day (E8) embryonic DRGs is 0.5 ng/ml (~2 × 10?11M). (ii) Cultures derived from chick embryos of increasing ages (E8 to E18) showed a progressive increase in the proportion of process-bearing cells which survived in the absence of NGF. While few process-bearing cells survived in cultures of E8 ganglia in the absence of NGF, survival of neurons in cultures derived from E17 and E18 ganglia was not affected by the absence of the factor. Comparable results were obtained with cultures in which the number of non-neuronal cells was greatly reduced. (iii) Neurons derived from E8 ganglia lost their NGF requirement in culture at a conceptual age similar to that which they appear to do so in vivo. These results are discussed with respect to the role of NGF in development of sensory neurons.  相似文献   

4.
Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic polypeptide, distantly related to transforming growth factor-beta (TGF- beta), originally isolated by virtue of its ability to induce dopamine uptake and cell survival in cultures of embryonic ventral midbrain dopaminergic neurons, and more recently shown to be a potent neurotrophic factor for motorneurons. The biological activities and distribution of this molecule outside the central nervous system are presently unknown. We report here on the mRNA expression, biological activities and initial receptor binding characterization of GDNF and a shorter spliced variant termed GDNF beta in different organs and peripheral neurons of the developing rat. Both GDNF mRNA forms were found to be most highly expressed in developing skin, whisker pad, kidney, stomach and testis. Lower expression was also detected in developing skeletal muscle, ovary, lung, and adrenal gland. Developing spinal cord, superior cervical ganglion (SCG) and dorsal root ganglion (DRG) also expressed low levels of GDNF mRNA. Two days after nerve transection, GDNF mRNA levels increased dramatically in the sciatic nerve. Overall, GDNF mRNA expression was significantly higher in peripheral organs than in neuronal tissues. Expression of either GDNF mRNA isoform in insect cells resulted in the production of indistinguishable mature GDNF polypeptides. Purified recombinant GDNF promoted neurite outgrowth and survival of embryonic chick sympathetic neurons. GDNF produced robust bundle-like, fasciculated outgrowth from chick sympathetic ganglion explants. Although GDNF displayed only low activity on survival of newborn rat SCG neurons, this protein was found to increase the expression of vasoactive intestinal peptide and preprotachykinin-A mRNAs in cultured SCG neurons. GDNF also promoted survival of about half of the neurons in embryonic chick nodose ganglion and a small subpopulation of embryonic sensory neurons in chick dorsal root and rat trigeminal ganglia. Embryonic chick sympathetic neurons expressed receptors for GDNF with Kd 1-5 x 10(-9) M, as measured by saturation and displacement binding assays. Our findings indicate GDNF is a new neurotrophic factor for developing peripheral neurons and suggest possible non-neuronal roles for GDNF in the developing reproductive system.  相似文献   

5.
The response of embryonic chick nodose ganglion (neural placode-derived) and dorsal root ganglion (neural crest-derived) sensory neurons to the survival and neurite-promoting activity of brain-derived neurotrophic factor (BDNF) was studied in culture. In dissociated, neuron-enriched cultures established from chick embryos between Day 6 (E6) and Day 12 (E12) of development, both nodose ganglion (NG) and dorsal root ganglion (DRG) neurons were responsive on laminin-coated culture dishes to BDNF. In the case of NG, BDNF elicited neurite outgrowth from 40 to 50% of the neurons plated at three embryonic ages; E6, E9, and E12. At the same ages, nerve growth factor (NGF) alone or in combination with BDNF, had little or no effect upon neurite outgrowth from NG neurons. The response of NG neurons to BDNF was dose dependent and was sustainable for at least 7 days in culture. Surprisingly, in view of a previous study carried out using polyornithine as a substrate for neuronal cell attachment, on laminin-coated dishes BDNF also sustained survival and neurite outgrowth from a high percentage (60-70%) of DRG neurons taken from E6 embryos. In marked contrast to NG neurons, the combined effect of saturating levels of BDNF and NGF activity on DRG neurons was greater than the effect of either agent alone at all embryonic ages studied. Under similar culture conditions, BDNF did not elicit survival and neurite outgrowth from paravertebral chain sympathetic neurons or parasympathetic ciliary ganglion neurons. We propose that primary sensory neurons, regardless of their embryological origin, are responsive to a "central-target" (CNS) derived neurotrophic factor--BDNF, while they are differentially responsive to "peripheral-target"-derived growth factors, such as NGF, depending on whether the neurons are of neural crest or placodal origin.  相似文献   

6.
Shortly after neurons begin to innervate their targets in the developing vertebrate nervous system they become dependent on the supply of a neurotrophic factor, such as nerve growth factor (NGF) for survival. Recently, Martin et al. (1988) have shown that inhibiting protein synthesis prevents the death of NGF-deprived sympathetic neurons, suggesting that NGF promotes neuronal survival by suppressing an active cell death program. To determine if other neurotrophic factors may regulate neuronal survival by a similar mechanism we examined the effects of inhibiting protein and RNA synthesis in other populations of embryonic neurons that require different neurotrophic factors, namely: 1) trigeminal mesencephalic neurons, a population of proprioceptive neurons that are supported by brain-derived neurotrophic factor; 2) dorsomedial trigeminal ganglion neurons, a population of cutaneous sensory neurons that are supported by NGF; 3) and ciliary ganglion neurons, a population of parasympathetic neurons that are supported by ciliary neuronotrophic factor. Blocking either protein or RNA synthesis rescued all three populations of neurons from cell death induced by neurotrophic factor deprivation in vitro. Thus, at least three different neurotrophic factors appear to promote survival by a similar mechanism that may involve the suppression of an endogenous cell death program.  相似文献   

7.
A series of in vivo studies have been carried out using the chick embryo to address several critical questions concerning the biological, and to a lesser extent, the biochemical characteristics of a putative avian muscle-derived trophic agent that promotes motoneuron survival in vivo. A partially purified fraction of muscle extract was shown to be heat and trypsin sensitive and rescued motoneurons from naturally occurring cell death in a dose-dependent fashion. Muscle extract had no effect on mitotic activity in the spinal cord and did not alter cell number when administered either before or after the normal cell death period. The survival promoting activity in the muscle extract appears to be developmentally regulated. Treatment with muscle extract during the cell death period did not permanently rescue motoneurons. The motoneuron survival-promoting activity found in skeletal muscle was not present in extracts from a variety of other tissues, including liver, kidney, lung, heart, and smooth muscle. Survival activity was also found in extracts from fetal mouse, rat, and human skeletal muscle. Conditioned medium derived from avian myotube cultures also prevented motoneuron death when administered in vivo to chick embryos. Treatment of embryos in ovo with muscle extract had no effect on several properties of developing muscles. With the exception of cranial motoneurons, treatment with muscle extract did not promote the survival of several other populations of neurons in the central and peripheral nervous system that also exhibit naturally occurring cell death. Initial biochemical characterization suggests that the activity in skeletal muscle is an acidic protein between 10 and 30 kD. Examination of a number of previously characterized growth and trophic agents in our in vivo assay have identified several molecules that promote motoneuron survival to one degree or another. These include S100β, brain-derived neurotrophic factor (BDNF), neurotrophin 4/5 (NT-4/5), ciliary neurotrophic factor (CNTF), transforming growth factor β (TGFβ), platelet-derived growth factor-AB (PDGF-AB), leukemia inhibitory factor (CDF/LIF), and insulin-like growth factors I and II (IGF). By contrast, the following agents were ineffective: nerve growth factor (NGF), neurotrophin-3 (NT3), epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF, bFGF), and the heparin-binding growth-associated molecule (HB-GAM). Of those agents that were effective, CDF/LIF, IGF-1 and -2, BDNF, and TGF are reported to be expressed in developing or adult muscle. Studies are underway to determine whether the survival activity found in avian muscle extract can be accounted for by one or more of these growth factors. Of all the tissue extracts and purified proteins tested here, only the neurotrophins—NGF, NT-3, and BDNF (but not NT-4/5)—rescured sensory neurons from naturally occurring cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Motor neurons isolated from 6-day-old embryonic chick spinal cords require muscle extract for survival in culture; however, it was found, that some motor neurons, identified by retrograde labeling with rhodamine, will survive in mixed spinal cell cultures in the absence of the extract. The motor neuron survival-promoting activity produced by spinal cells is soluble and differs from the factor present in muscle extract, the two activities acting in a synergistic manner: the spinal cell activity potentiated that of muscle to decrease its ED50 by an order of magnitude, the motor neuronal survival (30%) seen in the presence of both factors being more than the sum of their individual activities. This synergism was shown to be restricted to the action of the spinal cell factor on motor neurons, no effect of the factor being noted with sympathetic neurons. As a series of defined growth and survival factors present in the central nervous system (nerve growth factor, brain-derived neurotrophic factor, acidic and basic fibroblast growth factors) had no effect on motor neuron survival, we conclude that the molecule responsible for the motor neuron survival-promoting activity of the spinal cells is a previously undefined factor.  相似文献   

9.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc.  相似文献   

10.
1. An extract of denervated skeletal muscle contained activity for promotion of neurite outgrowth from telencephalic neurons, as well as that from neurons in the spinal cord. A factor responsible for the activity was characterized in cultures of dissociated neurons.2. The factor acted on neurons only when they were attached to the surface of culture dishes. Since treatments with proteases and lectins reduced the outgrowth-promoting activity, the factor was thought to be a glycoprotein.3. Among the monoclonal antibodies raised against the partially purified extract, five antibodies were found to inhibit the activity for spinal and telencephalic neurons. The most potent antibody, 4D2a, recognized mainly a 63-kD protein and other minor proteins in the extract. Although the 63-kD protein was confirmed to be chick serum albumin by analysis of amino acid sequence, the purified albumin exhibited no activity.4. From these observations, the factor was found to be a glycoprotein recognized by the neutralizing antibody as one of the minor components of the extract. This factor exhibits its activity in a substrate-bound form but not in a diffusible one.  相似文献   

11.
Little is known about the signal transduction mechanisms involved in the response to neurotrophins and other neurotrophic factors in neurons, beyond the activation of the tyrosine kinase activity of the neurotrophin receptors belonging to the trk family. We have previously shown that the introduction of the oncogene product ras p21 into the cytoplasm of chick embryonic neurons can reproduce the survival and neurite-outgrowth promoting effects of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), and of ciliary neurotrophic factor (CNTF). To assess the potential signal- transducing role of endogenous ras p21, we introduced function-blocking anti-ras antibodies or their Fab fragments into cultured chick embryonic neurons. The BDNF-induced neurite outgrowth in E12 nodose ganglion neurons was reduced to below control levels, and the NGF- induced survival of E9 dorsal root ganglion (DRG) neurons was inhibited in a specific and dose-dependent fashion. Both effects could be reversed by saturating the epitope-binding sites with biologically inactive ras p21 before microinjection. Surprisingly, ras p21 did not promote the survival of NGF-dependent E12 chick sympathetic neurons, and the NGF-induced survival in these cells was not inhibited by the Fab-fragments. The survival effect of CNTF on ras-responsive ciliary neurons could not be blocked by anti-ras Fab fragments. These results indicate an involvement of ras p21 in the signal transduction of neurotrophic factors in sensory, but not sympathetic or ciliary neurons, pointing to the existence of different signaling pathways not only in CNTF-responsive, but also in neurotrophin-responsive neuronal populations.  相似文献   

12.
The effect of muscle extract on cell survival and choline acetyltransferase (ChAT) activity in cultures of enriched cholinergic neurones from 7-day chick embryo spinal cord was examined. When neurones were grown on hydrated collagen gels, considerable cell survival and ChAT activity were obtained even in the absence of tissue extract. These parameters were stimulated twofold in the presence of skeletal muscle extract but not liver or skin extracts. The cholinergic neurotrophic activity was found to be heat- and trypsin-sensitive, nondialysable, and to act in the virtual absence of glial cells. These data are consistent with a retrogradely acting motor neurone trophic activity.  相似文献   

13.
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are important for the regulation of survival and differentiation of distinct, largely non-overlapping populations of embryonic sensory neurons. We show here that the multifunctional cytokine transforming growth factor-β (TGF-β) fails to maintain sensory neurons cultured from embryonic day (E) 8 chick dorsal root ganglia (DRG), although DRG neurons are immunoreactive for the TGF-β receptor type II, which is essential for TGF-β signaling. However, in combination with various concentrations of NT-3 and NT-4, but not NGF, TGF-β3 causes a further significant increase in neuron survival. In DRG cell cultures treated with NGF, NT-3, and NT-4, a neutralizing antibody to TGF-β decreases neuron survival suggesting that endogenous TGF-β in these cultures affects the efficacies of neurotrophins. Consistent with this notion and a modulatory role of TGF-β in neurotrophin functions is the observation that TGF-β2 and-β3 immunoreactivities and TGF-β3 mRNA are located in embryonic chick DRG in close association with neurons from E5 onwards. We also show that leukemia inhibitory factor (LIF) significantly decreases NGF-mediated DRG neuron survival. Together, these data indicate that actions and efficacies of neurotrophins are under distinct control by TGF-β and LIF in vitro, and possibly also in vivo. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

14.
During embryonic development, expression of neurotrophin receptor tyrosine kinases (Trks) by sensory ganglia is continuously and dynamically regulated. Neurotrophin signaling promotes selective survival and axonal differentiation of sensory neurons. In embryonic day (E) 15 rat trigeminal ganglion (TG), NGF receptor TrkA is expressed by small diameter neurons, NT-3 receptor TrkC and BDNF receptor TrkB are expressed by large diameter neurons. Organotypic explant and dissociated cell cultures of the TG (and dorsal root ganglia) are commonly used to assay neurotrophin effects on developing sensory neurons. In this study, we compared Trk expression in E15 rat TG explant and dissociated cell cultures with or without neurotrophin treatment. Only a subset of TG cells express each of the three Trk receptors in wholemount explant cultures as in vivo conditions. In contrast, all TG neurons co-express all three Trk receptors upon dissociation, regardless of neurotrophin treatment. Neurons cultured in low concentrations of one neurotrophin first, and switched to higher concentrations of another after 1 day, survive and display morphological characteristics of neurons cultured in a mixture of both neurotrophins for 3 days. Our results indicate that wholemount explant cultures of sensory ganglia represent in vivo conditions in terms of Trk expression patterns; whereas dissociation dramatically alters Trk expression by primary sensory neurons.  相似文献   

15.
《The Journal of cell biology》1993,123(6):1555-1566
We have investigated the role of trkA, the tyrosine kinase NGF receptor, in mediating the survival response of embryonic neurons to NGF. Embryonic trigeminal mesencephalic (TMN) neurons, which normally survive in the presence of brain-derived neurotrophic factor (BDNF) but not NGF, become NGF-responsive when microinjected with an expression vector containing trkA cDNA. In contrast, microinjection of ciliary neurotrophic factor (CNTF)-dependent embryonic ciliary neurons with the same construct does not result in the acquisition of NGF responsiveness by these neurons despite de novo expression of trkA mRNA and protein. The failure of trkA to result in an NGF-promoted survival response in ciliary neurons is not due to absence of the low-affinity NGF receptor, p75, in these neurons. Quantitative RT/PCR and immunocytochemistry showed that TMN and ciliary neurons both express p75 mRNA and protein. These findings not only provide the first direct experimental demonstration of trkA mediating a physiological response in an appropriate cell type, namely NGF-promoted survival of embryonic neurons, but indicate that not all neurons are able to respond to a trkA-mediated signal transduction event.  相似文献   

16.
An important step in the development of peripheral sensory and sympathetic neurons is the onset of the survival response and dependence on the presence of nerve growth factor (NGF) or other neurotrophic factors. We have recently observed that immature sympathetic neurons from 7-day-old chick embryos are unable to become NGF-responsive in vitro and we have now used these cells to identify molecules that induce NGF-dependent neuronal survival. We found that retinoic acid (RA) induces the ability of these cells to survive in the presence of NGF. At RA concentrations of 10(-9)-10(-8)M virtually all neurons survived in the presence of NGF. RA was found to also induce the biologically active, high-affinity NGF receptor: high-affinity receptors were undetectable on dissociated E7 sympathetic neurons and were observed in vitro only in RA-treated neurons. These findings suggest that the induction of high-affinity NGF receptors may be sufficient to activate the survival response in sympathetic neurons and imply an important role for RA during neuron differentiation in the peripheral nervous system.  相似文献   

17.
The purposes of the experiments reported is to provide an unambiguous demonstration that embryonic skeletal muscle contains factors that act directly on embryonic spinal motor neurons both to support their survival and to stimulate the outgrowth of neurites. Cells of lumbar and brachial ventral spinal cords from 6-day-old chick embryos were separated by centrifugation in a two-step metrizamide gradient, and a motor neuron enriched fraction was obtained. Motor neurons were identified by retrogradely labeling with rhodamine isothiocyanate, and were enriched fourfold in the motor neuron fraction relative to unfractionated cells. In culture, the isolated motor neurons died within 3-4 days unless they were supplemented with embryonic chick skeletal muscle extract. Two functionally distinct entities separable by ammonium sulfate precipitation were responsible for the effects of muscle extracts on motor neurons. The 0-25% ammonium sulfate precipitate contained molecules that alone had no effect on neuronal survival but when bound to polyornithine-coated culture substrata, stimulated neurite outgrowth and potentiated the survival activity present in muscle. Most of this activity was due to a laminin-like molecule being immunoprecipitated with antisera against laminin, and immunoblotting demonstrated the presence of both the A and B chains of laminin. A long-term survival activity resided in the 25-70% ammonium sulfate fraction, and its apparent total and specific activities were strongly dependent on the culture substrate. In contrast to the motor neurons, the cells from the other metrizamide fraction (including neuronal cells) could be kept in culture for a prolonged time without addition of exogenous factor(s).  相似文献   

18.
The survival effects of brain-derived neurotrophic factor (BDNF) on the ganglion cells of the chick retina were studied in vitro at different embryonic ages. We found these effects to be strongly age-dependent: at E5, when the first ganglion cell axons have crossed the optic chiasm, but not yet reached the tectum, ganglion cells survived on a laminin substrate irrespective of the presence or absence of BDNF. At E6, when the axons of the first-generated ganglion cells reached the rostral pole of the tectum, the ganglion cells began to show a dependency on BDNF for survival, but the majority of them were alive after 2 days in vitro in the absence of BDNF. With increasing age, the BDNF dependency for survival increased, and at E11, the majority of the ganglion cells plated were dependent on BDNF for survival. It is at this age that the maximal number of axons can be found in vivo in the optic nerve, the subsequent elimination of ganglion cells and their axons resulting in the loss of hundreds of thousands of them over the next few days. Taken together, these data indicate that retinal ganglion cells depend on BDNF for survival only when their axons have reached their target in vivo. This situation is reminiscent of that described in the peripheral nervous system for the nerve growth factor responsiveness of mouse trigeminal sensory neurons during the period of innervation of their target.  相似文献   

19.
The peroxidase-antiperoxidase (PAP) method, and a specific monoclonal antibody (192-IgG) were used to determine the localization of nerve growth factor receptor (NGFr) in the skeletal muscles of the adult rats. The rectus femoris and the gastrocnemius (medialis and lateralis) muscles were analyzed. Occurrence of NGFr immunoreactivity was observed in: 1) a subpopulation of myelinated nerve fibers within muscle nerve trunks; 2) the vascular adventitia and nerve-like profiles around the blood vessels; 3) the outer capsule and the surface of the intrafusal muscle fibers of muscle spindles. Conversely, images, suggesting the presence of NGFr on muscle fibers or in motor end-plates, were not found. Our results suggest the presence of NGF-binding sites in sensory and sympathetic nerve fibers, and/or their target tissues localized on the skeletal muscles of the rat, whereas the motor nerve fibers lack of NGFr. The dependence of sympathetic neurons, proprioceptive primary sensory neurons, and motoneurons innervating the mammalian muscles upon NGF or other neurotrophic factors is discussed.  相似文献   

20.
Retrograde trophic influences originating in the skeletal musculature have been postulated to be involved in regulating survival and differentiation of embryonic motor neurons and reactive terminal sprouting of mature motor fibres. We have previously described the use of a quantitative immunoassay for neurofilament protein to bioassay in vitro the cell-type-specific neuronotrophic activity of nerve growth factor (NGF) on sensory ganglion neurons. In the present study, the effect of media conditioned by adult human muscle cells (MCM) on the in vitro development of chicken spinal neurons has been studied using a similar approach. Significant increases in neurofilament protein levels in 7-day chicken embryonic spinal cord cultures were found with doses of MCM protein as low as 0.4 microgram/ml, with a dose-response relationship yielding maximal and half-maximal effects at 4 and 1 microgram/ml, respectively. Maximal increases in neurofilament protein levels were associated with an approximate two-fold increase in neuronal cell survival. MCM also induced increases in choline acetyltransferase activity in chick spinal cord cultures. In both the absence and presence of NGF, MCM did not increase neurofilament protein expression in primary cultures of sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号