首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary During the uppermost Carboniferous and lowermost Permian algal mounds were formed in inner shelf settings of the Carnic Alps (Austria/Italy). A specific mound type, characterized by the dominance of the dasyclad green alga Anthracoporella was studied in detail with regard to geometry, relationship between mound and intermound rocks, composition of the sediment, biota and diagenetic criteria. The two meter-sized mounds studied, occur within depositional sequences of transgressive systems tracts in the Lower Pseudoschwagerina Limestones (uppermost Gzhelian) at the flank of the Schulterkofel. The mounds consist of an Anthracoporella core facies with a spongecrust boundstone facies at the base and at the top. The massive limestones of the Anthracoporella core facies exhibit abundant algal tufts and bushes, frequently in life position. The limestones of the intermound facies represented by thin-bedded bioclastic wackestones and packstones with abundant phylloid algae underlie and overlie the mounds. Intercalations of intermound beds within the mound facies indicate sporadic disruption of mound growth. Onlapping of intermound beds on steep mound flanks indicate rapid stabilization and lithification of mound flanks and the existence of a positive paleorelief. Asymmetrical shape of the mounds may be current controlled. Mound and intermound biota differ in the prevailing algae but are relatively similar with regard to associated foraminifera. Conspicuous differences concern bioerosion and biogenic encrustations. Bothare, high in intermound areas but low in the Anthracoporella core facies. The mounds show no ecological zonation. The mounds grew by in-place accumulation of disintegrated algal material and trapped bioclastic material between erect algal thalli. The comparison of the various Anthracoporella mounds demonstrates that almost each mound had ist own history. Establishing a general model for these mounds is a hazardous venture.  相似文献   

2.
Summary Liassic sponge mounds of the central High Atlas (Rich area, northern Morocco) have a stratigraphic range from the Lower/Upper Sinemurian boundary interval up to the lower parts of the Lower Pliensbachian (Carixian). The base of Liassic sponge mounds consists of a transgressive discontinuity, i.e., a condensed section of microbioclastic wackestones with firm- and hardgrounds, ferruginous stromatolites, sponge spicules and ammonites. The top of Liassic sponge mounds is an irregular palaeorelief covered by cherty marl-limestone rhythmites, namely hemipelagic spicular wackestones with radiolaria. In the Rich area, section Foum Tillicht, the sponge mound succession has a total thickness of about 250 meters. Within this succession we distinguished between three mound intervals. The lower mound interval shows only small, meter-scale sponge mounds consisting of boundstones with lyssakine sponges, commensalicTerebella and the problematicumRadiomura. This interval forms a shallowing-upward sequence culminating in a bedded facies withTubiphytes, calcareous algae (Palaeodasycladus), sponge lithoclasts, coated grains, and thin rims of marine cement. The middle mound interval is aggradational with decametric mounds and distinct thrombolitic textures and reefal cavities. The mound assemblage here consists of hexactinellid sponges, lithistid demosponges, non-rigid demosponges,Radiomura, Serpula (Dorsoserpula), Terebella, encrusting bryozoa, and minor contributions by calcareous sponges, and excavating sponges (typeAka). Thrombolites are dendrolitic and may reach sizes of several tens of centimeters, similar to the maximum size of siliceous sponges. The upper mound interval appears retrogradational and geometries change upsection from mound shapes to flat lenses and level-bottom, biostromal sponge banks. The biotic assemblage is similar to that of the middle mound interval and there is no difference between mound and bank communities. The demise of sponge mounds is successive from regional spread in the Sinemurian to more localised spots in the Lower Pliensbachian. This reduction correlates with an increasing influence of pelagic conditions. At Foum Tillicht, sponge mounds lack any photic contribution and there is virtually no differentiation into subcommunities between mound surface and cavity dwelling organisms. There is some evidence that the heterotrophic food web of mound communities was sourced by oxygen minimum zone edge effects, namely microbial recycling of essential elements such as N and P. Basin geometry suggests a waterdepth of several 100's of meters, well below the photic zone and possibly only controlled by the depth range of the oxygen minimum zone. Palaeoceanographic conditions of well-stratified deeper water masses diminished gradually during widespread transgression across the Sinemurian to Pliensbachian boundary culminating in the Lower Pliensbachianibex ammonite zone.  相似文献   

3.
Karl Krainer 《Geobios》2007,40(5):625
The Late Paleozoic (early Kasimovian-late Artinskian) sedimentary sequence of the Carnic Alps (Austria/Italy) is composed of cyclic, shallow-marine, mixed siliciclastic-carbonate sedimentary rocks. It contains different types of skeletal mounds in different stratigraphic levels. The oldest mounds occur at the base of the Auernig Group, within a transgressive sequence of the basal Meledis Formation. These mounds are small and built by auloporid corals. Algal mounds are developed in the Auernig Formation of the Auernig Group, forming biostromes, and Lower Pseudoschwagerina Limestone of the Rattendorf Group forming biostromes and bioherms. The dominant mound-forming organism of these mounds is the dasycladacean alga Anthracoporella spectabilis. In mounds of the Auernig Formation subordinately the ancestral corallinacean alga Archaeolithophyllum missouriense is present, whereas in mounds of the Lower Pseudoschwagerina Limestone a few calcisponges and phylloid algae occur locally at the base and on top of some Anthracoporella mounds. Mounds of the Auernig Formation formed during relative sea level highstands whereas mounds of the Lower Pseudoschwagerina Limestone formed during transgression. The depositional environment was in the shallow marine, low-turbulence photic zone, just below the active wave base and lacking siliciclastic influx. The algal mounds of the Carnic Alps differ significantly from all other algal mounds in composition, structure, zonation and diagenesis; the formation of the mounds cannot be explained by the model proposed by Wilson (1975). The largest mounds occur in the Trogkofel Limestone, they are composed of Tubiphytes/Archaeolithoporella boundstone, which shows some similarities to the “Tubiphytes thickets” of stage 2 of the massive Capitan reef complex of the Guadalupe Mountains of New Mexico/West Texas.  相似文献   

4.
Summary Analysis of the taxonomic composition, diversity and guild structure of five “typical” reef and mud mound communities ranging in age from Late Devonian-Early Carboniferous indicates that each of these aspects of community organization changed dramatically in relation to three extinction events. These events include a major or mass extinction at the end of the Frasnian; reef communities were also effected by less drastic end-Givetian and mid-late Famennian extinctions of reef-building higher taxa. Peak Paleozoic generic diversities for reef-building stromatoporoids and rugose corals occurred in the Eifelian-Givetian; reef-building calcareous algal taxa were longranging with peak diversity in the Devonian. These three higher taxa dominated all reef-building guilds (Constructor, Binder, Baffler) in the Frasnian and formed fossil reef communities with balanced guild structures. The extinction of nearly all reef-building stromatoporoids and rugose corals at the end of the Frasnian and the survival of nearly all calcareous algac produced mid-late Famennian reef communities dominated by the Binder Guild. Despite the survival of most calcareous algae and tabulate corals, the mid-late Famennian extinction of all remaining Paleozoic stromatoporoids and nearly all shelf-dwelling Rugosa brought the already diminished Devonian reef-building to a halt. These Devonian extinctions differ from mass extinctions by the absence of a statistically significant drop in taxonomic diversity and by their successional and cumulative effects on reef communities. Tournaisian mud mounds contain communities markedly different from the frame-building communities in Late Devonian and Visean reefs. Mound-building biotas consist of an unusual association dominated by erect, weakly skeletonized members of the Baffler Guild (chiefly fenestrate Bryozoa; Pelmatozoa) and laterally expanded, mud-binding algae/stromatolites and reptant Bryozoa. The initial recovery to reefs with skeletal frameworks in the Visean was largely due to the re-appearance of new species of abundant colonial rugose corals (Constructor Guild) and fenestrate Bryozoa. This Frasnian-Visean evolution in the taxonomic composition and structure of the reef-building guilds is also expressed by abrupt changes in biofacies and petrology of the reef limestones they produced. Thus, “typical” Frasnian reef limestones with balanced guild structures are framestones-boundstones-bafflestones, Famennian reefs are predominantly boundstones, Tournaisian mud mounds are bafflestones and Visean reefs are bafflestones-framestones.  相似文献   

5.
Summary The upper part of the LowerPseudoschwagerina Limestone (Rattendorf Group), outcropping on the northwestern flank of Schulterkofel Mountain, Carnic Alps (Austria) is described with special emphasis on fusulinid microfossils and facies. This fusulinid-rich section offers an ideal opportunity for biostratigraphy in defining the Permo-Carboniferous boundary in this region. The LowerPseudoschwagerina Limestone is composed of shallow-marine limestones with intercalated thin siltstone and sandstone beds. Fusulinid limestones are represented by two types of wackestones, both containing large quantities of smaller foraminifers. Fusulinid grainstones are rare. Limestones rich in fusulinids were found only within the bedded limestone facies in beds both below and especially above siliciclastic intercalations. This may indicate that the best living conditions for fusulinids existed immediately before and especially after the climax of a regressive phase (sea-level lowstand). The fusulinid limestones were deposited within a protected, shallow-marine shelf environment with normal salinity. Pseudoschwagerinid fusulinids appear in the upper part of the LowerPseudoschwagerina Limestone, in samples SK 107d (undeterminable species) and SK 108, i.e. between 92 m and 93 m above the base of the section within a bedded limestone immediately above the uppermost clastic intercalation. The fusulinid fauna is represented by about 30 species belonging to only a few genera. Species ofTriticites andRugosofusulina dominate, whereas those ofDaixina, Rugosochusenella andPseudofusulina are rare. A characteristic feature of the fauna is the strong similarity with fusulinid faunas described from Russia as well as from Middle and East Asia. Some of the described fusulinids are new for the Carnic Alps. The first appearance ofPseudoschwagerina andOccidentoschwagerina (Occidentoschwagerina alpina Zone) in the upper part of the LowerPseudoschwagerina Limestone in the Schulterkofel section defines the position of the Carboniferous-Permian boundary.  相似文献   

6.
塔里木板块塔中Ⅰ号坡折带附近上奥陶统良里塔格组取芯井段中可识别多种生物礁灰岩类型,包括珊瑚骨架/障积岩、海绵骨架/绑结岩、苔藓虫绑结岩、钙藻障积岩、钙质菌藻障积/绑结岩等礁灰岩类,藉此可归纳出珊瑚礁、珊瑚-钙藻礁、层孔虫礁、层孔虫-钙藻礁、珊瑚-层孔虫-钙藻礁、苔藓虫礁丘、钙藻礁丘、灰泥丘和微生物礁等生物建造单元。这些礁体的时空分布模式与古环境分异相关联,纵向上具有灰泥丘向珊瑚-层孔虫-钙藻礁至苔藓虫礁丘和钙藻礁的群落结构更替趋势;空间分布则向台地北缘,即I号坡折带延伸显示由低能带灰泥丘向高能带珊瑚-层孔虫-钙藻礁的相变,而且高能带珊瑚-层孔虫-钙藻主体礁和环其周缘相对低能带的钙藻礁丘、灰泥丘等在一定范围内构成造礁群落结构分异。  相似文献   

7.
Modern cool-water carbonate mounds topped by corals form an extended reef belt along the NW European continental margin at 200–1200 m water depth. An essential element of mound growth are hardgrounds which provide a stable substratum for mound-building invertebrate colonisation and stabilise the inclined mound flanks. Evaluating the degree of lithification and the slope stability against erosion represents an important task within the ESF programme MOUNDFORCE under the umbrella of EUROMARGINS. Sampling of hardgrounds during RV Meteor cruises M61-1 and -3 in 2004 by means of the IFM-GEOMAR TV-grab and the Bremen ROV QUEST focused on carbonate mounds of the Porcupine Seabight and northwestern Rockall Bank off Ireland. Lithified carbonates of mid-Pleistocene age were exhumed during the Holocene and are now exposed on the top and flanks of numerous carbonate mounds showing a patchy to dense colonisation by living corals and associated invertebrates. The sediments, composed of foraminiferal–nannoplankton oozes and admixed mound-derived invertebrate skeletons, range from partly lithified chalks to dense micritic limestones. These wackestones to packstones clearly differ from bacterially induced authigenic carbonate crusts typical of hydrocarbon seep settings by showing current-induced sedimentary structures, a non-luminescing matrix indicating oxic pore fluids, and a marine isotopic signature lacking any depleted carbon regime which is typical of anaerobic methane oxidation. The carbonate lithification is driven by carbonate ion diffusion from supersaturated seawater into the pore fluids in the studied areas. Vigorous bottom currents were the ultimate control not only of carbonate cementation by enhancing the diffusion process and supporting a pumping mechanism, but also of hardground formation and mound shaping by exhuming lithified carbonates and preventing fine-grained sediment accumulation at the downslope mound flanks.  相似文献   

8.
Summary The Upper Triassic Dachsteinkalk of the Hochk?nig Massif, situated 50 km south of Salzburg in the Northern Calcareous Alps, corresponds to a platform margin reef complex of exceptional thickness. The platform interior limestones form equally thick sequences of the well known cyclic Lofer facies. Sedimentation in the reef complex was not so strongly controlled by low-amplitude sea-level oscillations as was the Lofer facies. The westernmost of the 8 facies of the reef complex is an oncolite-dominated lagoon, in which wave-resistant stromatolite mounds with a relief of a few metres were periodically developed. The transition to the central reef area is accomplished across the back-reef facies. In the back-reef facies patch reefs and calcisponges appear. The proportion of coarse bioclastic sediment increases rapidly over a few hundred metres before the central reef area is encountered. The central reef area consists of relatively widely spaced small patch reefs that did not develop wave-resistant reef framework structures. The bulk of the sediment in the central reef area is coarse bioclastic material, provided by the dense growth of reef organisms and the wave-induced disintegration of patch reefs. Collapse of the reef margin is recorded by the supply of large blocks of patch reef material to the upper reef slope. Additionally, coarse, loose bioclastic debris was supplied to the upper reef slope and this was incorporated into debris flows on the reef slope and turbidites found at the base of the slope and in the off-reef facies. Partially lithified packstones and wackestones of the lower to middle reef slope were modified by mass movement to form breccia and rudstone sheets. The latter reach out hundreds of metres into the off-reef facies environment. A reef profile is presented which was derived by the restoration of strike and dip information. In conjunction with constraints imposed by sedimentary facies related to slope processes, the angle of slope in the reef margin area ranged from 11° to 5°, forming a concave (dished downwards) slope. Water depth estimations require that the central reef area did not develop in water of less than 10 metres depth. At the reef margin water depths were about 30 metres, at the base of the reef slope 200 metres and deepening in the off-reef facies to 250 metres. While previous work on reef complexes from this type of setting suggests growth in a heavily storm-dominated environment, the present author finds little evidence for the storm generation of the fore reef breccias, although there is good evidence for storm-influenced sedimentation and reworking in the central reef area. Post-depositional processes were characterised by continued slope processes causing brecciation and hydraulic injection of red internal sediments downwards into the reef slope and off-reef limestones. Hydrothermal circulation caused a number of phases of post-depositional (diagenetic) brecciation. There appears not to have been an important period of emergence at the Triassic/Jurassic boundary.  相似文献   

9.
Summary The Belgian Frasnian carbonate mounds occur in three stratigraphic levels in an overall backstepping succession. Petit-Mont and Arche Members form the famous red and grey “marble” exploited for ornamental stone since Roman times. The evolution and distribution of the facies in the mounds is thought to be associated with ecologic evolution and relative sea-level fluctuations. Iron oxides exist in five forms in the Frasnian mounds; four are undoubtedly endobiotic organized structures: (1) microstromatolites and associated forms (blisters, veils...), possibly organized in “endostromatolites”; (2) hematitic coccoids and (3) non dichotomic filaments. The filaments resemble iron bacteria of theSphaerotilus-Leptothrix “group”; (4) networks of dichotomic filaments ascribable to fungi; (5) a red ferruginous pigment dispersed in the calcareous matrix whose distribution is related to the mound facies type. The endobiotic forms developed during the edification of the mounds, before cementation by fibrous calcite. The microbial precipitation of iron took place as long as the developing mounds were bathed by water impoverished in oxygen.  相似文献   

10.
Summary Several Waulsortian-type mud mounds nearly 500 m thick and about 5 km long occur in the Middle Paleozoic carbonate section of the Aktur nappe in the mountains on the right bank of Isfara river. These buildups form a well developed barrier system that stretches along the South Ferganian carbonate platform margin and divides the carbonate complex into a fore-reef and a back-reef part. The time of the mounds' most active growth was from the Late Silurian (Ludlow) to the Middle Devonian (Eifel). Three main facies types can be recognized in the mud mounds: 1. micritic core facies, 2. sparitic flank facies and 3. loferitic capping facies. The central massive or crudely bedded part of the mounds consists of white or light grey clotted micrite. Macrofossils are rare. The sparitic flank facies in contrast consists of coarse and densely packed crinoidal wackestone-floatstones with some brachiopod shell debris. Solitary rugose corals, tabulate corals, stromato-poroids and fragments of mollusks are also abundant. The tops of the mounds are usually covered with loferitic pelmicrites or oolitic grainstone caps. Stromatactis-like structures are very rare and poorly developed in the South Ferganian mud mounds. However, almostin all such mounds horizons of calcitic breccias can be found. In order to explain all the features found in the Fergana mounds an ‘atoll-like’ model has been proposed which starts the evolution of the mud mounds with a small nucleus bioherm. The main stage of the evolution corresponds to an atoll-like structure developing on the surface of shallow water platforms. White clotted micrite of the mound core facies is interpreted as a accumulation of fine-grained sediment in an inner lagoon flanked by crinoidal bar deposits. The mound flank facies represents the atoll rim deposits from where the carbonate mud is derived. The capping loferitic facies is considered as tidal flat deposit that developed on top of the buildups during the last stage of its evolution. The knoll shape of the mounds is explained by the retreat of the atoll flanking crinoidal bars back into the inner lagoon during the rise in sea level. Stromatactis-like structures of small cavities filled with sparry calcite owe their existence to burrowing organisms. Calcitic breccias are interpreted as paleokarst collapse breccias. They indicate that the tops of the mud mound became subaerially exposed. Other evidence for a subaerial exposure can be seen in the occurrence of Variscian ‘black and white’ limestone gravel on the tops of some mud mounds. According toWard et al. (1970) these sediments were produced above the sea level at the edge of hypersaline lakes situated on islands.  相似文献   

11.
In the locality of Colle (Cantabrian Zone, NW Spain), the upper part of the Valporquero Shale Formation (Emsian, La Vid Group) contains an interval of shales and marlstones (barren, greenish-grey shales and fossiliferous, greenish-grey or reddish shales/marlstones) with beds and packages of homogeneous and cross-bedded skeletal limestones. Metre-scale mud mounds and coral biostromes occur encased in the fossiliferous reddish and greenish-grey shale/marlstones, respectively, with the coral biostromes overlying conspicuous skeletal limestone bodies. These rocks were deposited on a carbonate ramp, ranging from above storm wave base for the cross-bedded skeletal limestones to below the storm wave base for the remaining deposits, organic buildups included. The vertical stacking of these facies and the occurrence of the two types of buildups are interpreted to reflect the interplay among several (possibly 4th and 5th) orders of relative sea-level variations, during a 3rd-order highstand. Coral biostromes occur in early 5th-order transgressive system tracts developed within late 4th-order highstand, and are interpreted to have thrived on a stable granular substrate (skeletal limestones) in non-turbid waters, being later aborted by the onset of muddy sedimentation. Biostrome features suggest that they developed under environmental conditions essentially different from those related to the sedimentation of their granular substrate. Mud mounds occur in 5th-order transgressive and early highstand system tracts tied to early 4th-order sea-level rise. Field relationships suggest that mud mounds grew coevally with muddy sedimentation, with high-frequency variations in carbonate vs. terrigenous mud sedimentation influencing their development.An erratum to this article can be found at  相似文献   

12.
Summary Anin situ Oxfordian patch reef from the Süntel hills (florigemma-Bank, Korallenoolith, NW-Germany) is described. It is composed of an autochthonous reef core overlain by a ‘parautochthonous’ biostrome. The exposed reefal area amounts to about 20 m in lateral and up to 4 m in vertical direction. Nearly all major marine reefal fossil associations from the Tethyal realm are present. In the reef core two facies can be distinguished: (1)Thamnasteria dendroidea thicket facies and (2) thrombolite facies. The first facies is composed of a thin branched autochthonous coral thicket mainly constructed ofTh. dendroidea colonies with only a minor portion ofStylosmilia. Frequently, theTh. dendroidea branches laterally coalesce bridge-like forming a delicate initial framework which was subsequently reinforced by thick microbial coatings, that make up approximately 80% of the rock volume. This facies is an excellent example for microbialite binding in reefal architecture. Additionally, several generations of micromorphic and partly cryptic encrusting organisms settled on theTh. dendroidea branches and microbialite crusts. They successively overgrow each other and fill the space between the coral branches in the thicket forming a characteristic community replacement sequence. Initial colonization of theThamnasteria dendroidea took place on an oncoidic/bioclastic hardground. During this early phase of reefal development, microbialites also played an important role in stabilizing and binding the reef body. The thrombolite facies (2) occupying nearly the same volume of the reef body as facies type (1) consists of a thrombolitic microbialitic limestone which fills the interstice between the coral colonies. It shows a considerably lower faunal diversity than theTh. dendroidea facies. Numerous cavities are interspersed in the thrombolithe and are almost completely filled with dolomitized allomicrite. In contrast, microbialite and allomicrite adjacent to the reef core rarely reveal any dolomitized areas. Above the reef core, mostly toppledSolenopora jurassica thalli occur together with a few massiveIsastrea colonies forming a parautochthnous biostrome. They are inhabited by a low diverse assemblage of encrusting organisms. Microbialites are only rarely present in this biostromal unit. The patch reef is developed within a lagoonal limemud facies both separated by a sharp interface. In contrast, continuous facies transition exists between theSolenopora biostrome and adjacent deposits which are characterized by micritic to pelmicritic limestone sometimes with lenses of oncoids. Debris derived from the patch reef is only sporadically intercalated in the reef surrounding lagoonal sediments. Gastropods, bivalves, and dasycladalean algae dominate the lagoonal biota. Up-section following theSolenopora biostrome nerinean gastropods become the most abundant species amounting to a ‘Nerinea-bed’. This horizon moderately elevates above the patch reef indicating, that is arose above the surrounding sea floor forming a relief. The patch reef established on a secondary hardground probably released by a minor transgression and a nondepositional regime. It grew up on a well-illuminated sea floor only a few meters below sea level. Only a low background sedimentation rate and modest water circulation are assumed during reefal growth. These features characterize an open marine lagoon. A subsequent shallowing upwards trend caused emergence of the early lithifiedflorigemma-Bank sediments. In the following erosional phase the reef core,Solenopora biostrome and ‘Nerinea-bed’ were sharply cut. Paleokarst phenomena (karst solution of the rocks, selective leaching of the aragonitic corals) truncate the surface of theflorigemma-Bank. Released by a transgressive sea level, the paleokarst surface is densely inhabited by marine boring and encrusting organisms (oysters, serpulids). Karst cavities are filled with an oncoid-bearing bioclastic limestone with a large portion of siliciclastics. Theflorigemma-Bank is overlain by the reddish bioclastic sandstone of the ‘Zwischenfl?zregion’.  相似文献   

13.
Eberhard Gischler 《Facies》2006,52(3):341-360
A first systematic study of composition, texture, and distribution of modern sediments in two Maldivian atolls reveals the predominance of skeletal carbonates. Fragments of corals, calcareous algae, mollusks, benthic foraminifera, and echinoderms are identified in the grain-size fraction >125 μm. Non-skeletal grains such as cemented fecal pellets and aggregate grains only occur in small percentages. Fragments of skeletal grains, aragonite needles, and nanograins (<1 μm) are found in the grain-size fraction <125 μm. Needles and nanograins are interpreted to be largely of skeletal origin. Five sedimentary facies are distinguished (1–5), for which the Dunham-classification is applied. Fore reef, reef, back reef, as well as lagoonal patch reef and faro areas in both atolls are characterized by the occurrence of coral grainstones (1), which also contain fragments of red coralline algae, the codiacean alga Halimeda, and mollusks. On reef islands, coral-rich sediment is cemented to form intertidal beachrock and supratidal cayrock. Skeletal grains in atoll-interior lagoons are mainly mollusks and foraminifera. The lagoon of Rasdhoo Atoll is covered in the west by mudstones (2), in the center by mollusk packstones (3) and mollusk wackestones (4), and by hard bottoms with corals in the east adjacent to channels through the atoll reef margin. The interior lagoon of Ari Atoll contains mollusk wackestones (4) in the center and mollusk-foraminifer packstones (5). Marginal lagoon areas are characterized by hard bottoms with corals. Facies distribution appears to be an expression of depositional energy, which decreases from the atoll margin towards the center in Ari Atoll, and towards the west in Rasdhoo Atoll. Predominant sediment mineralogies include aragonite and high-magnesium calcite. Mean aragonite content decreases from 90% in coral grainstone to 70–80% in mollusk packstone, mollusk wackestone, and mudstone, and to 50% in mollusk-foraminifer packstone. Stable isotopes of oxygen and carbon in bulk samples range from −3 to −1.5 (δ18O) and from +0.4 to +3.2 (δ13C). It is not possible to delineate facies based on O- and C-isotopes.  相似文献   

14.
Summary In the area of Haidach (Northern Calcareous Alps, Austria), coral-rudist mounds, rudist biostromes, and bioclastic limestones and marls constitute an Upper Cretaceous shelf succession approximately 100 meters thick. The succession is part of the mixed siliciclasticcarbonate Gosau Group that was deposited at the northern margin of the Austroalpine microplate. In its lower part, the carbonate succession at Haidach comprises two stratal packages that each consists, from bottom to top, of a coral-rudist mound capped by a rudist biostrome which, in turn, is overlain by bioclastic limestones and, locally, marls. The coral-rudist mounds consist mainly of floatstones. The coral assemblage is dominated by Fungiina, Astreoina, Heterocoeniina andAgathelia asperella (stylinina). From the rudists, elevators (Vaccinites spp., radiolitids) and recumbents (Plagioptychus) are present. Calcareous sponges, sclerosponges, and octocorals are subordinate. The elevator rudists commonly are small; they settled on branched corals, coral heads, on rudists, and on biolastic debris. The rudists, in turn, provided settlement sites for corals. Predominantly plocoid and thamnasteroid coral growth forms indicate soft substrata and high sedimentation rates. The mounds were episodically smothered by carbonate mud. Many corals and rudists are coated by thick and diverse encrustations that indicate high nutrient level and/or turbid waters. The coral-rudist mounds are capped byVaccinites biostromes up to 5 m thick. The establishment of these biostromes may result from unfavourable environmental conditions for corals, coupled with the potential of the elevator rudists for effective substrate colonization. TheVaccinites biostromes are locally topped by a thin radiolitid biostrome. The biostromes, in turn, are overlain by bioclastic limestones; these are arranged in stratal packages that were deposited from carbonate sand bodies. Approximately midsection, an interval of marls with abundantPhelopteria is present. These marls were deposited in a quiet lagoonal area where meadows of sea grass or algae, coupled with an elevated nutrient level, triggered the mass occurrence ofPhelopteria. The upper part of the Haidach section consists of stratal packages that each is composed of a rudist biostrome overlain by bioclastic wackestones to packstones with diverse smaller benthic foraminifera and calcareous green algae. The biostromes are either built by radiolitids,Vaccinites, andPleurocora, or consist exclusively of radiolitids (mainlyRadiolites). Both the biostromes and the bioclastic limestones were deposited in a low-energy lagoonal environment that was punctuated by high-energy events.In situ-rudist fabrics typically have a matrix of mudstone to rudistclastic wackestone; other biogens (incl. smaller benthic foraminifera) are absent or very rare. The matrix of rudist fabrics that indicate episodic destruction by high-energy events contain a fossil assemblage similar to the vertically associated bioclastic limestones. Substrata colonized by rudists thus were unfavourable at least for smaller benthic foraminifera. The described succession was deposited on a gently inclined shelf segment, where coral-rudist mounds and hippuritid biostromes were separated by a belt of bioclastic sand bodies from a lagoon with radiolitid biostromes. The mounds document that corals and Late Cretaceous elevator rudists may co-occur in close association. On the scale of the entire succession, however, mainly as a result of the wide ecologic range of the rudists relative to corals, the coral-dominated mounds and the rudist biostromes are vertically separated.  相似文献   

15.
Abstract:  A bryozoan fauna from carbonate mud-mounds is described from subsurface well cores from the Upper Ordovician (Lower Ashgill) Jifarah (Djeffara) Formation of Tripolitania, north-west Libya. Among a diverse assemblage dominated by trepostomes, nine species of bryozoans are identified, including Jifarahpora libyensis gen. et sp. nov. Delicate and robust branching, encrusting and nodular bryozoan growth forms are all common. The bryozoan-rich limestones are mostly mudstones and wackestones, with bafflestone and floatstone textures, but the mounds apparently lack organic framework and microbial fabrics. Regional geophysical data indicate rapid thickness changes between wells, where mound complexes locally up to 100 m thick had limited topographic relief over the surrounding sea floor. The mounds formed in a high-latitude, cool-water carbonate belt that extended widely across the northern margin of Gondwana. Quaternary analogues from the Great Australian Bight suggest that these early Ashgill mounds may have developed in slope environments during an episode of glacial lowstand that preceded the late Ashgill, Hirnantian glacial event.  相似文献   

16.
Summary The high-plateau of the Jbel Bou Dahar, situated in the Central and Eastern High Atlas of Morocco, represents a Lower Jurassic carbonate platform that drowned at the beginning of the Toarcian. Three phases of platform evolution can be distinguished: During thepre-drowning phase (upper Sinemurian— upper Pliensbachian) the platform interior facies reflects a restricted-marine lagoonal environment, protected by scattered buildups and cemented debris at the platform margin. Upper and mid-slope are dominated by coarse-grained, poorly sorted limestones, deposited through debris flows during sea-level lowstands. Sea-level highstand deposits occur at the toe of slope and are formed by an alternation of fine-grained litho- and bioclastic pack- to grainstones (turbidites), marls and mud- to wackestones (hemipelagic oozes). A condensed section, reflecting an abrupt and fundamental environmental change along the entire platform, characterises thedrowning phase (upper Pliensbachian— lower Toarcian). Within the platform interior densely packed biosparites represent the switch to high-energy environments, causing erosion of the former pre-drowning lagoonal sediments. These erosional products were redeposited on the platform slope, leading to the formation of coarse-grained non-skeletal sparites and micrites. Both platform interior and slope successions show a series of cyclic variations in sediment composition that could have been triggered by small-scale sea-level fluctuations. In contrast to the abrupt facies change at the pre-drowning —drowning boundary, the transition to thepost-drowning phase (lower Toarcian—Aalenian) is gradual. During this phase, biopelmicrites and pure micrites were deposited in all platform sections, followed by the deposition of calcistiltites. The facies point to quiet-water conditions below storm-wave base and display a uniform deep-marine sedimentation. This analysis shows that the drowning of the Jbel Bou Dahar carbonate platform was caused by abrupt and fundamental changes in the shallow-water realm. After exposure of the platform, these changes prevented the carbonate factory from re-establishing itself and made it impossible for the platform to keep up with the subsequent rise in sea level. These local changes were probably triggered by high-frequency sealevel variations in combination with regional or even worldwide changes in ocean circulation patterns.  相似文献   

17.
Summary Upper Jurassic (Malm δ to ζ1) massive limestones (‘algal-sponge-reefs, sponge-reefs, reef-complexes, reefs, algal-sponge-bioherms, biolithites, Massenkalk, bioherms, Stillwasser-Mudmounds’) were analyzed in the Southern Swabian Alb, the Southern Franconian Alb and in drilling wells in the Molasse basin (Southern Bavaria). This analysis was carried out within the frame of a multidisciplinary DFG-study with the objective of decifering the controls on the development of Upper Jurassic spongiolites, their three-dimensional distribution, their characteristic faunal composition, and the diagenetic trends of the different primary facies. The data base consists of detailed facies mapping in the areas of the Eybtal and the Blautal (1300 samples) as well as comparative studies in the Upper Donautal (Swabian Alb) and the Southern Franconian Alb (400 samples). All together about 500 thin sections were studied. The distribution of the most important components (ooids, intraclasts, peloids, corals, sponges, sponge spicules, cyanobacterial crusts, brachiopods, molluscs, echinoids, bryozoans, serpulids,Terebella, Tubiphytes), and diagenetic features (dolomite, dedolomite, silicification, stylolites, clay flasers, hematite patches) results in a spatial distribution pattern of facies types. The largest part (70 %) of the massive limestones consists of a peloid-lithoclast-ooid sand facies rich in completely or partly micritized ooids. These ooids, especially in beds of the Malm δ to ε, might be the clue to a reinterpretation of the water depth. True biogenic constructions occur (about 30 % of the volume; sponge-algalmudmounds, algal-sponge-boundstones, and brachiopod-algal-sponge-mounds) within and at the margins of this facies and are interpreted as platform sands. The spatial distribution of the buildups in relation to the sand facies was probably controlled by hydrodynamic conditions. In addition, zoned sponge-algal-mounds occur in intraplatform channels and nodular sponge-algal-mudmounds in the marly basin sediments between platform sand areas. Breccias and slumpings in beds older than the Malm ζ have to be reinterpreted. Most of the breccias found originated from the flanks of the sand platforms, reflecting the faunal composition of the algal-sponge-boundstones which stabilized the flanks. Breccias of this composition occur throughout the Malm δ-ζ1 and differ markedly in their composition from the sand facies. The boundary breccia (Malm ε/ζ1) is interpreted as marking a regressive maximum. The increasing growth of buildups, rich in brachiopods in the Malm ζ1, is ascribed to an increase of reef growth at the beginning of a transgression. Detailed facies analyses necessary for the reconstruction of the spatial distribution of different facies types are in progress. Most of the older data on faunal distributions cannot be used for detailed facies analysis because they differentiated only between massive facies and bedded facies. Therefore Upper Jurassic limestones of Southern Germany should be restudied in order to recognize the volumetric importance of sand facies and buildups within massive limestones.  相似文献   

18.
Fossiliferous mounds of carbonate mud are a distinctive facies in the middle Chazy Group (Crown Point Formation) at Isle La Motte, Lake Champlain. The mounds are surrounded by bedded calcarenite of spar-cemented pelmatozoan debris. Channels which cut into the mounds during mound growth are filled with the same calcarenite. The mud-free intermound rocks and the mound biota suggest agitated, normal marine shallow-water environments. The principal lime-secreting organisms within the mounds are stromatoporoids, calcareous algae, tabulate corals, sponges, and bryozoans. Each mound is dominated in terms of biomass by one of three groups: stromatoporoids, calcareous algae, and bryozoans. Most of the mound biota first appear at the base of the Crown Point Formation. In the lower Crown Point Formation the organisms increase in number and species. Both changes in the biota are related to periods of shallowing of the Chazy sea which are also reflected in the character of the carbonate sands.  相似文献   

19.
This paper re-examines unsolved problems concerning the relationships between skeletal benthic communities, the skeletal carbonate sediments they produce and how these are preserved in the subsurface. Recent work based on shelf-wide datasets of modern shallow-marine carbonate sediments of South Florida suggest that the boundaries between facies occur randomly and that facies occurrence bears little relation to water depth. This is at variance with earlier work from the region that indicated facies occurrence related to different environments and which helped establish the basis for palaeoenvironmental analysis of ancient limestones.A windward-facing depositional margin of a carbonate mound in the back-reef area of the Florida Keys is used as a small-scale, case study to examine whether surface peritidal facies occur in an ordered or random fashion and whether they are depth related. Lateral facies transition analysis along transects from the shoreline to the shallow subtidal indicates that peritidal facies occur in a very well-ordered (i.e. non-random) arrangement of zones and patches. Surface facies are generally well-preserved and recognisable in the shallow subsurface and in cores through the Holocene carbonates and shoreline mangrove peats. Analysis of upward facies transitions in cores also indicates common facies trends reflecting the evolution of the sediment mound in response to rising Holocene sea level. However, even though the modern facies occur in an ordered and depth-related pattern, subsurface facies do not show a simple relation to the known sea-level curve in the area. Rather, they relate to a complex of different rates of sea-level rise, sea-floor topography, carbonate production rates, wave/storm energy input, and bioturbation.  相似文献   

20.
Summary Late Arenigian biohermal reef mounds and biostromes within the shallow-marine platform facies of the upper San Juan Formation of the Precordillera (Western Argentina) represent a new Early Ordovician reef type. The meter-sized reefs are dominated byZondarella communis n.g. n. sp. The new taxon is characterized by domical, bulbous and laminar morphotypes exhibiting growth layers and thin horizontal and vertical as well as intermingled skeletal elements included within different sets. The fossil maybe compared with stromatolites and stromatoporoids but an interpretation as primitive stromatoporoids is favoured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号