首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
On the Significance of Cytokinin Incorporation into RNA   总被引:10,自引:7,他引:3  
The clarification of the following 2 questions was attempted: (a) are cytokinins precursors in the formation of sRNA, (b) is the observed incorporation of cytokinins into sRNA related to the action of the hormone? Although Escherichia coli contains cytokinins in its sRNA, no cytokinin auxotroph mutants of E. coli could be found and the statistical probability for the existence of such mutants is extremely low. This suggests that cytokinins are not precursors in the synthesis of sRNA. A radioactive cytokinin, 6-benzylamino-9-methyl-purine was synthesized and it was tested whether or not it is incorporated into sRNA of soybean callus tissue. Masking the 9-position of the purine inhibited the incorporation of this cytokinin into RNA while not affecting its biological activity. This is taken as an indication that the observed incorporation of cytokinins such as benzyladenine into sRNA is not related to the action of this hormone.  相似文献   

2.
3.
The incorporation of 14C-2-mevalonic acid into transfer RNA and ribosomal RNA (high molecular weight RNA) in rapidly growing, cytokinin-dependent tobacco (Nicotiana tabacum var. Wisconsin No. 38) callus cultures has been investigated. Approximately 40% of the label incorporated into transfer RNA was present in a ribonucleoside with chromatographic properties identical to those of cis-ribosylzeatin. The remainder of the label in the transfer RNA appears to be nonspecific incorporation resulting from degradation and metabolism of 14C-2-mevalonic acid by the tobacco callus tissue. Although the total radioactivity incorporated into ribosomal RNA was roughly the same as in transfer RNA, the specific radioactivity of the transfer RNA was about four times higher than that of the ribosomal RNA, and the ribosomal RNA labeling could be distinguished from the cytokinin labeling observed in transfer RNA. The distributions of the 14C-2-mevalonic acid label and cytokinin activity in tobacco callus transfer RNA fractionated by benzoylated diethylaminoethylcellulose chromatography indicate that at least two cytokinin-containing transfer RNA species are present in this tissue.  相似文献   

4.
5.
6.
The effect of nitrate and cytokinin on the induction of nitrate reductase (NADH-nitrate oxidoreductase, EC 1.6.6.1) in embryos of Agrostemma githago was compared. Increased enzyme levels in response to treatment with the cytokinin benzyladenine were not correlated with a general stimulation of protein synthesis or a general reduction of protein breakdown. Actinomycin D did not inhibit the formation of nitrate reductase in response to nitrate or the cytokinin. Cycloheximide and puromycin inhibited the induction by the hormone to the same extent as, or even more than, the incorporation of [14C]leucine into protein. Induction of nitrate reductase by nitrate was much less susceptible to inhibition by cycloheximide and puromycin than induction of the enzyme by benzyladenine. When induction of nitrate reductase was carried out in the presence of 2H2O, isopycnic equilibrium centrifugation in CsCl showed that incorporation of 2H into the enzyme had occured. The increase in the buoyant density of nitrate reductase was the same whether the enzyme was induced by nitrate or by benzyladenine, indicating that at least part of the nitrate reductase molecule was newly synthesized in both instances.  相似文献   

7.
Yip WK  Yang SF 《Plant physiology》1986,80(2):515-519
Cytokinins are known to stimulate ethylene production in mungbean hypocotyls synergistically with indoleacetic acid (IAA), in mungbean hypocotyls synergistically with Ca2+, and in wilted wheat leaves. Thidiazuron, a substituted urea compound, mimicked the effect of benzyladenine (BA) in all three systems. In the Ca2+ + cytokinin system and the IAA + cytokinin systems of mungbean hypocotyls, thiadiazuron was slightly more active than BA at equimolar concentration. In mungbean hypocotyls exogenously applied IAA was rapidly conjugated into IAA asparate, and this conjugation process was effectively inhibited by thidiazuron, as by cytokinins. In the wilted wheat leaves system, 10 micromolar thidiazuron exerted stress ethylene production equal to that exerted by 1 millimolar BA, indicating that thidiazuron is more active than BA by two orders. The structure-activity relationship of thidiazuron and its thiadiazolylurea analogs in stimulating Ca2+-dependent ethylene production in mungbean hypocotyls was found to agree well with the structure-activity relationship of these derivatives in promoting the growth of callus tissues. These results indicate that thidiazuron and its derivatives are highly active to mimic the adenine-type cytokinin responses in promoting ethylene production and that the structure-activity relationship in promoting the growth of callus and in promoting ethylene production is similar.  相似文献   

8.
Ribosomal RNA Turnover in Contact Inhibited Cells   总被引:14,自引:0,他引:14  
CONTACT inhibition of animal cell growth is accompanied by a decreased rate of incorporation of nucleosides into RNA1–3. Contact inhibited cells, however, transport exogenously-supplied nucleosides more slowly than do rapidly growing cells4,5, suggesting that the rate of incorporation of isotopically labelled precursors into total cellular RNA may be a poor measure of the absolute rate of RNA synthesis by these cells. Recently, Emerson6 determined the actual rates of synthesis of ribosomal RNA (rRNA) and of the rapidly labelled heterogeneous species (HnRNA) by labelling with 3H-adenosine and measuring both the specific activity of the ATP pool and the rate of incorporation of isotope into the various RNA species. He concluded that contact inhibited cells synthesize ribosomal precursor RNA two to four times more slowly than do rapidly growing cells, but that there is little if any reduction in the instantaneous rate of synthesis of HnRNA by the non-growing cells. We have independently reached the same conclusion from simultaneous measurements on the specific radioactivity of the UTP pool and the rate of 3H-uridine incorporation into RNAs (unpublished work of Edlin and myself). However, although synthesis of the 45S precursor to ribosomal RNA is reduced two to four times in contact inhibited cells, the rate of cell multiplication and the rate of rRNA accumulation are reduced ten times. This suggests either “wastage”7 of newly synthesized 45S rRNA precursor, or turnover of ribosomes in contact inhibited cells Two lines of evidence suggest that “wastage” of 45S RNA does not play a significant role in this system. (1) The rate of synthesis of 45S RNA in both growing and contact inhibited cells agrees well with that expected from the observed rates of synthesis of 28S and 18S RNAs (unpublished work of Edlin and myself). Emerson has made similar calculations6. (2) 45S RNA labelled with a 20 min pulse of 3H-uridine is converted in the presence of actinomycin D to 28S and 18S RNAs with the same efficiency (approximately 50%) in both growing and contact inhibited cells. These results indicate that, in order to maintain a balanced complement of ribosomal RNAs, contact inhibited cells must turn over their ribosomes. We present evidence here that rRNA is stable in rapidly growing chick cells, but begins to turn over with a half-life of approximately 35–45 h as cells approach confluence and become contact inhibited.  相似文献   

9.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

10.
Isolation of ribosomal RNA precursors from Physarum polycephalum   总被引:2,自引:0,他引:2  
Ribosomal RNA synthesis in Physarum polycephalum was studied by labeling intact microplasmodia with [3H]uridine. Labeled, high-molecular-weight RNA species were found in a 30,000 S structure released by phenol extraction at room temperature. RNA was released from the structure by further phenol extraction at 65–70 °C. If the labeling period was 15 min or longer, the labeled RNA was seen by polyacrylamide gel electrophoresis to be of two major types, a heterodisperse collection of 45-35 S molecules and a 26 S species. If the labeling was carried out for 30 min in the presence of cycloheximide, the major labeled species had an electrophoretic mobility corresponding to 40 S. Studies of the labeling kinetics, methylation, and base composition of these RNA molecules indicate that they are precursors to ribosomal RNA. The molecular weights of the homogeneous 40 and 26 S precursors are 3.0 × 106 and 1.45 × 106 daltons, respectively, in comparison with molecular weights of 1.29 × 106 and 0.68 × 106 daltons for the completed ribosomal RNA's.  相似文献   

11.
During vegetative growth of the cellular slime mold Dictyostelium discoideum, RNA is rapidly labeled by radioactive precursor and both the 25 S and the 17 S ribosomal RNA species appear in the cytoplasm 6–7 min after the onset of labeling. Thirty minutes after further incorporation of radioactive RNA precursors has been blocked, less than 10% of the label in RNA is associated with the nuclear fraction. After aggregation of the slime mold amoebae, RNA appears in the cytoplasm at a reduced rate, the small ribosomal subunit appearing in the cytoplasmic fraction more slowly than the larger ribosomal subunit. Some labeled RNA remains in the nuclei of developing cells long after the incorporation of 3H-uridine is blocked.  相似文献   

12.
RNA transcription and translation in sea urchin oocytes and eggs   总被引:3,自引:0,他引:3  
The steady-state concentrations and absolute rates of synthesis of ribosomal RNA (rRNA) molecules were measured in oocytes, eggs, embryos, and larvae of the Hawaiian sea urchin Tripneustes gratilla. The steady-state concentration per genome of the RNA precursor sequences measured by hybridization to a cloned rDNA fragment was approximately 100- to 300-fold greater in the RNA obtained from oocytes and eggs than in the RNA extracted from embryos and larvae. Since the rate of processing of the rRNA precursor at different stages is not greatly different, the rates of rRNA synthesis must be considerably greater in oocytes than in embryo cells. The absolute rate of RNA synthesis in oocytes and embryos was determined from the incorporation of [3H]guanosine into cellular GTP pools and into both precursor and mature rRNA species. The data indicate an approximately 40-fold higher rate of rRNA synthesis in oocytes than that measured in embryos or previously in larvae (J. Griffith and T. Humphreys, 1979, Biochemistry18, 2178–2185). Together these results indicate that the ribosomal genes are transcribed much more rapidly during sea urchin oogenesis than during embryogenesis or larval stages.  相似文献   

13.
A new method for separating Drosophila egg chambers into different developmental classes (Jacobs-Lorena and Crippa, 1977) made it possible to study changes in the rate of ribosomal RNA (rRNA), 5S RNA, and tRNA synthesis and the changes in ribosomal gene number during oogenesis. Synthesis of RNA was measured by [3H]uridine incorporation in vivo and subsequent analysis on sucrose gradients or gel electrophoresis. Specific radioactivity of nucleotide pools has also been determined. Ribosomal gene number has been measured by hybridization of egg chamber DNA to rRNA of high specific radioactivity. Our findings led us to conclude that in Drosophila melanogaster: (i) rRNA, 5S RNA, and tRNA are synthesized in all stages of oogenesis. (ii) In every stage, rRNA is the main RNA species synthesized. (iii) The rate of rRNA, 5S RNA, and tRNA synthesis increases greatly during oogenesis and is paralleled by a similar increase in ribosomal gene number resulting from the polyploidization of the nurse cell nuclei.  相似文献   

14.
The incorporation of labeled precursors into RNAs and proteins of isolated tobacco (Nicotiana tabacum L.) leaf protoplasts decreases with increasing osmotic pressure in the incubation medium. The incorporation of precursors into RNA and proteins is linear for 15–18 h after the isolation of the protoplasts, irrespective of the osmolarity of the culture media. The uptake of precursors is also affected by the osmolarity of the medium. However, the osmotic stress-induced inhibition of incorporation of precursors into RNA and proteins is also apparent if the differences in uptake are taken into consideration in the calculation. Incorporation of 32P into TMV-RNA is also inhibited by osmotic stress. As assayed by the double labeling ratio technique, osmotic stress has less unequivocal effect on TMV protein synthesis.Abbreviations PP protoplast - RNase ribonuclease - rRNA ribosomal ribonucleic acid - SDS sodium dodecyl sulfate - SSC 0.1 M Na-acetate in 0.15 M NaCl - TCA trichloroacetic acid - TMV tobacco mosaic virus  相似文献   

15.
Conditions were established for the maximal synthesis of RNA by Xenopus cultured cell nuclei. These differed from those for mammalian nuclei in having a lower K+ optimum. The Xenopus nuclei showed all three RNA polymerase activities and processed rRNA to 28 S and 18 S species. Extracts of full-grown oocytes stimulated the rate of RNA synthesis 2.5-fold and caused it to continue linearly for at least 6 hr. This full effect could be produced by preincubation of the nuclei with oocyte extract, followed by their reisolation and assay under standard conditions, provided that the four ribonucleotide triphosphates were present during the preincubation. The stimulatory factor(s) were mainly present in the cytoplasm of the oocyte. They produced quantitatively identical stimulations of RNA synthesis in hamster nuclei. The overall stimulatory effect of cell extracts disappears in the egg, remains absent through cleavage, but reappears at the late blastula stage. This corresponds to the changes in RNA synthesis believed to occur in early development. The extracts affect polymerases I and III, but not II to a significant extent. They also stimulate the incorporation of [γ-32P]ATP and GTP into RNA, though to a lesser extent than the incorporation of [3H]UTP. The egg extract inhibits γ-32P incorporation. There therefore seems to be some effect on the initiation of new chain synthesis, but its magnitude is uncertain, and the effect could be indirect.  相似文献   

16.
C. M. Bray  J. Dasgupta 《Planta》1976,132(2):103-108
Summary RNA synthesis and protein synthesis in embryonic axis tissue of viable pea (Pisum arvense L. var. N.Z. maple) seed commences during the first hour of germination. Protein synthesis in axis tissue of non-viable pea seed is barely detectable during the first 24 h after the start of imbibition. Nonviable axis tissue incorporates significant levels of [3H]uridine into RNA during this period but the level of incorporation does not increase significantly over the first 24 h of imbibition. In axis tissue of non-viable seed during the first hour of imbibition most of the [3H]uridine was incorporated into low molecular weight material migrating in advance of the 4S and 5S RNA species in polyacrylamide gels but some radioactivity was incorporated into a discrete species of RNA having a molecular weight of 2.7×106. After 24 h, non-viable axis tissue incorporates [3H]uridine into ribosomal RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and a heterogeneous RNA species of molecular weight ranging from 2.2×106 to 2.7×106. No 4S or 5S RNA synthesis is detectable after 24 h of imbibition in non-viable axis tissue. Axis tissue of viable pea seed synthesises rRNA, 4S and 5S RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and the rRNA precursor species at both periods of germination studied. Loss of viability in pea seed appears to be accompanied by the appearance of lesions in the processing of rRNA precursor species and a significant loss of RNA synthesising activity.Abbreviations rRNA ribosomal RNA - TCA trichloroacetic acid - SLS sodium lauryl sulphate - PPO 2,5 Diphenyloxazole - POPOP 1,4-Bis-2-(4-methyl-5-penyloxazolyl)-benzene  相似文献   

17.
The Kinetics of the Synthesis of Ribosomal RNA in E. coli   总被引:3,自引:0,他引:3       下载免费PDF全文
The kinetics of the synthesis of ribosomal RNA in E. coli has been studied using C14-uracil as tracer. Two fractions of RNA having sedimentation constants between 4 and 8S have kinetic behavior consistent with roles of precursors. The first consists of a very small proportion of the RNA found in the 100,000 g supernatant after ribosomes have been removed. It has been separated from the soluble RNA present in much larger quantities by chromatography on DEAE-cellulose columns. The size and magnitude of flow through this fraction are consistent with it being precursor to a large part of the ribosomal RNA.

A fraction of ribosomal RNA of similar size is also found in the ribosomes. This fraction is 5 to 10 per cent of the total ribosomal RNA and a much higher proportion of the RNA of the 20S and 30S ribosomes present in the cell extract. The rate of incorporation of label into this fraction and into the main fractions of ribosomal RNA of 18S and 28S suggests that the small molecules are the precursors of the large molecules. Measurements of the rate of labeling of the 20, 30, and 50S ribosomes made at corresponding times indicate that ribosome synthesis occurs by concurrent conversion of small to large molecules of RNA and small to large ribosomes.

  相似文献   

18.
Announcement     
Phosphate concentration was found to control the biosynthesis of the antibiotic candicidin by resting cells of Streptomyces griseus. Phosphate concentrations above 1 mM decreased the rate of incorporation of [14C]propionate and [14C]p-aminobenzoic acid into candicidin in relation to the concentration of phosphate. The inhibitory effect of phosphate on incorporation of labeled precursors into candicidin was not caused by inhibition of cellular uptake of precursors. Protein synthesis, sensitive to chloramphenicol, was not affected by phosphate levels that inhibit antibiotic synthesis. Similarly, phosphate concentrations inhibitory to antibiotic synthesis did not affect rifampinsensitive RNA synthesis.  相似文献   

19.
Stimulation of incorporation of labelled precursors into the RNA of immature rat uterus is an early result of oestradiol-17beta action. However, the extent of the increased incorporation varies with the mode of administration of the labelled precursors and with the weight of the rat. At the age and weight range normally used response is maximal at ten times control incorporation, 4h after the administration of 0.3mug or more of oestradiol-17beta. Under these conditions the stimulation of incorporation into the acid-soluble fraction is only 2-2.5-fold. When the purified RNA is separated on polyacrylamide gels the major increase in incorporation of radioactive precursor is found in rRNA and 4S RNA; the formation of the former has been followed from the 45S precursor. Preceding these events by at least 30min, however, is an increase in the incorporation of precursor into RNA species of very high molecular weight, which remained in the first few slices of the gel. The possible significance of these findings is discussed. The increased synthesis of rRNA in response to oestradiol-17beta is more strongly inhibited by actinomycin D than the synthesis of other RNA species. Cycloheximide, depending on time of administration and dosage, inhibits either RNA synthesis or the maturation of rRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号