首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We assayed chromosomal abnormalities in hepatoma cell lines using the microarray-based comparative genomic hybridization (array-CGH) method and investigated the relationship between genomic copy number alterations and expression profiles in these hepatoma cell lines. We modified a cDNA array-CGH assay to compare genomic DNAs from seven hepatoma cell lines, as well as DNA from two non-hepatoma cell lines and from normal cells. The mRNA expression of each sample was assayed in parallel by cDNA microarray. We identified small amplified or deleted chromosomal regions, as well as alterations in DNA copy number not previously described. We predominantly found alterations of apoptosis-related genes in Hep3B and HepG2, cell adhesion and receptor molecules in HLE, and cytokine-related genes in PLC/PRF/5. About 40% of the genes showing amplification or loss showed altered levels of mRNA (p < 0.05). Hierarchical clustering analysis showed that the expression of these genes allows differentiation between alpha-fetoprotein (AFP)-producing and AFP-negative cell lines. cDNA array-CGH is a sensitive method that can be used to detect alterations in genomic copy number in tumor cells. Differences in DNA copy alterations between AFP-producing and AFP-negative cells may lead to differential gene expression and may be related to the phenotype of these cells.  相似文献   

3.
4.
Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12 approximately q44 (Chr1:142188905-246084832), 7 (over the whole chromosome), 2p25.3 approximately p16.3 (Chr2:18179-47899074), and 17q 21.32 approximately q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1 approximately q21.3 (Chr14:37666271- 47282550), and 22q13.1 approximately q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.  相似文献   

5.
High-resolution molecular cytogenetic techniques such as genomic array CGH and MLPA detect submicroscopic chromosome aberrations in patients with unexplained mental retardation. These techniques rapidly change the practice of cytogenetic testing. Additionally, these techniques may improve genotype-phenotype studies of patients with microscopically visible chromosome aberrations, such as Wolf-Hirschhorn syndrome, 18q deletion syndrome and 1p36 deletion syndrome. In order to make the most of high-resolution karyotyping, a similar accuracy of phenotyping is needed to allow researchers and clinicians to make optimal use of the recent advances. International agreements on phenotype nomenclature and the use of computerized 3D face surface models are examples of such improvements in the practice of phenotyping patients with chromosomal anomalies. The combination of high-resolution cytogenetic techniques, a comprehensive, systematic system for phenotyping and optimal data storage will facilitate advances in genotype-phenotype studies and a further deconstruction of chromosomal syndromes. As a result, critical regions or single genes can be determined to be responsible for specific features and malformations.  相似文献   

6.
Kappes SM 《Theriogenology》1999,51(1):135-147
A number of recent advances in genomic research will change and improve livestock production in the near future. Genetic linkage maps have been developed for a number of livestock species including cattle, sheep, and pigs. These maps allow scientists to identify chromosomal regions that influence traits of economic importance. This information will lead to improved genetic selection practices by identifying animals with superior copies of the chromosomal regions that affect the selected trait. This mapping information will also be used to identify the genes controlling the trait. A number of genomic regions or loci have already been reported that affect production, carcass or disease traits, and in a few cases, a specific gene has been identified. Production of transgenic animals with sequence changes in these genes may be beneficial for evaluating the effect of the gene upon the selected trait and more specifically the effect of certain polymorphisms (mutations) within the gene.  相似文献   

7.
High resolution, system-wide characterizations have demonstrated the capacity to identify genomic regions that undergo genomic aberrations. Such research efforts often aim at associating these regions with disease etiology and outcome. Identifying the corresponding biologic processes that are responsible for disease and its outcome remains challenging. Using novel analytic methods that utilize the structure of biologic networks, we are able to identify the specific networks that are highly significantly, nonrandomly altered by regions of copy number amplification observed in a systems-wide analysis. We demonstrate this method in breast cancer, where the state of a subset of the pathways identified through these regions is shown to be highly associated with disease survival and recurrence.  相似文献   

8.
9.
10.
Genetic alterations like point mutations, insertions, deletions, inversions and translocations are frequently found in cancers. Chromosomal translocations are one of the most common genomic aberrations associated with nearly all types of cancers especially leukemia and lymphoma. Recent studies have shown the role of non-B DNA structures in generation of translocations. In the present study, using various bioinformatic tools, we show the propensity of formation of different types of altered DNA structures near translocation breakpoint regions. In particular, we find close association between occurrence of G-quadruplex forming motifs and fragile regions in almost 70% of genes involved in rearrangements in lymphoid cancers. However, such an analysis did not provide any evidence for the occurrence of G-quadruplexes at the close vicinity of translocation breakpoint regions in nonlymphoid cancers. Overall, this study will help in the identification of novel non-B DNA targets that may be responsible for generation of chromosomal translocations in cancer.  相似文献   

11.
BACKGROUND: NTDs are considered complex disorders that arise from an interaction between genetic and environmental factors. NTD family 8776 is a large multigenerational Caucasian family that provides a unique resource for the genetic analysis of NTDs. Previous linkage analysis using a genome‐wide SNP screen in family 8776 with multipoint nonparametric mapping methods identified maximum LOD* scores of ~3.0 mapping to 2q33.1–q35 and 7p21.1–pter. METHODS: We ascertained an additional nuclear branch of 8776 and conducted additional linkage analysis, fine mapping, and haplotyping. Expression data from lymphoblast cell lines were used to prioritize candidate genes within the minimum candidate intervals. Genomic copy number changes were evaluated using BAC tiling arrays and subtelomeric fluorescent in situ hybridization probes. RESULTS: Increased evidence for linkage was observed with LOD* scores of ~3.3 for both regions. Haplotype analyses narrowed the minimum candidate intervals to a 20.3 Mb region in 2q33.1–q35 between markers rs1050347 and D2S434, and an 8.3 Mb region in 7p21.1–21.3 between a novel marker 7M0547 and rs28177. Within these candidate regions, 16 genes were screened for mutations; however, no obvious causative NTD mutation was identified. Evaluation of chromosomal aberrations using comparative genomic hybridization arrays, subtelomeric fluorescent in situ hybridization, and copy number variant detection techniques within the 2q and 7p regions did not detect any chromosomal abnormalities. CONCLUSIONS: This large NTD family has identified two genomic regions that may harbor NTD susceptibility genes. Ascertainment of another branch of family 8776 and additional fine mapping permitted a 9.1 Mb reduction of the NTD candidate interval on chromosome 7 and 37.3 Mb on chromosome 2 from previously published data. Identification of one or more NTD susceptibility genes in this family could provide insight into genes that may affect other NTD families. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Human cancers and some congenital traits are characterized by cytogenetic aberrations including translocations, amplifications, duplications or deletions that can involve gain or loss of genetic material. We have developed a simple method to precisely delineate such regions with known or cryptic genomic alterations. Molecular copy-number counting (MCC) uses PCR to interrogate miniscule amounts of genomic DNA and allows progressive delineation of DNA content to within a few hundred base pairs of a genomic alteration. As an example, we have located the junctions of a recurrent nonreciprocal translocation between chromosomes 3 and 5 in human renal cell carcinoma, facilitating cloning of the breakpoint without recourse to genomic libraries. The analysis also revealed additional cryptic chromosomal changes close to the translocation junction. MCC is a fast and flexible method for characterizing a wide range of chromosomal aberrations.  相似文献   

13.
BACKGROUND: Placental hemangioma (chorioangioma) and congenital hemangioma are relatively common tumors, which on rare occasions may occur together. Very little is known about the pathogenetic mechanisms underlying these lesions. CASE: Herein we describe a rare case of a stillborn infant with chorioangioma, placental mesenchymal dysplasia, and liver cavernous hemangioma. In addition, we present the findings of the karyotype analysis of these lesions, which was done with the bacterial artificial chromosome arrays using the comparative genomic hybridization method. The chromosomal abnormalities that we found were deletions at 2q13 and 7p21.1 and were common to both placental and liver lesions. CONCLUSIONS: None of the identified chromosomal aberrations have been previously associated with chorioangiomas or hemangiomas. Important genes that lie in these DNA regions may be implicated in the pathogenesis of congenital hemangiomas and mesenchymal dysplasia.  相似文献   

14.
An extensive number of genes have been implicated in the initiation and progression of human cancers, aiding our understanding of the genetic aetiology of this highly heterogeneous disease. In order to facilitate extrapolation of such information between species, we have isolated and physically mapped the canine orthologues of 25 well-characterised human cancer-related genes. The identity of PCR products representing each canine gene marker was first confirmed by DNA sequencing analysis. Each product was then radiolabelled and used to screen a genomic BAC library for the domestic dog. The chromosomal location of each positive clone in the canine karyotype was determined by fluorescence in situ hybridisation (FISH) onto canine metaphase preparations. Of the 25 genes, the FISH localisation of 21 correlated fully with that expected on the basis of known regions of conserved synteny between the human and canine genomes. Three correlated less closely, and the chromosomal location of the remaining marker showed no apparent correlation with current comparative mapping data. In addition to generating useful comparative mapping information, this panel of markers will act as a valuable resource for detailed study of candidate genes likely to be involved in tumourigenesis, and also forms the basis of a canine cancer-gene genomic microarray currently being developed for the study of unbalanced genomic aberrations in canine tumours.  相似文献   

15.
The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates.  相似文献   

16.
Comprehensive and reliable testing is an important component of counseling and management in clinical genetics. Identification of imbalances of chromosomal segments has uncovered new genes and has established phenotype/genotype correlations for many syndromes with previously unidentified causes. Conventional cytogenetics has proven to be useful for the detection of large aberrations, but its resolution limits the identification of submicroscopic alterations. Comparative genomic hybridization (CGH) on a microarray-based platform has the potential to detect and characterize both microscopic and submicroscopic chromosomal abnormalities. Nine cases of aberrations involving chromosome 18 are used to illustrate the use and clinical potential of array CGH.  相似文献   

17.
BACKGROUND: Cervical immature teratoma is a rare congenital tumor, and very few cases have been studied cytogenetically. CASE: In this article, we describe a case of this tumor type and present the findings of the karyotype of the lesion, which was performed with the bacterial artificial chromosome arrays using the comparative genomic hybridization method. The chromosomal abnormalities that we found included an amplification on 1p21.1, a 9p22 deletion, and a 1-copy gain of 17q21.33. CONCLUSIONS: None of the identified chromosomal aberrations have been previously associated with congenital extragonadal teratomas. Important genes that lie in these DNA regions may be implicated in the pathogenesis of congenital teratomas.  相似文献   

18.
MOTIVATION: The analysis of gene expression data in its chromosomal context has been a recent development in cancer research. However, currently available methods fail to account for variation in the distance between genes, gene density and genomic features (e.g. GC content) in identifying increased or decreased chromosomal regions of gene expression. RESULTS: We have developed a model-based scan statistic that accounts for these aspects of the complex landscape of the human genome in the identification of extreme chromosomal regions of gene expression. This method may be applied to gene expression data regardless of the microarray platform used to generate it. To demonstrate the accuracy and utility of this method, we applied it to a breast cancer gene expression dataset and tested its ability to predict regions containing medium-to-high level DNA amplification (DNA ratio values >2). A classifier was developed from the scan statistic results that had a 10-fold cross-validated classification rate of 93% and a positive predictive value of 88%. This result strongly suggests that the model-based scan statistic and the expression characteristics of an increased chromosomal region of gene expression can be used to accurately predict chromosomal regions containing amplified genes. AVAILABILITY: Functions in the R-language are available from the author upon request. CONTACT: fcouples@umich.edu.  相似文献   

19.
Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC.  相似文献   

20.
Genomic aberrations recurrent in a particular cancer type can be important prognostic markers for tumor progression. Typically in early tumorigenesis, cells incur a breakdown of the DNA replication machinery that results in an accumulation of genomic aberrations in the form of duplications, deletions, translocations, and other genomic alterations. Microarray methods allow for finer mapping of these aberrations than has previously been possible; however, data processing and analysis methods have not taken full advantage of this higher resolution. Attention has primarily been given to analysis on the single sample level, where multiple adjacent probes are necessarily used as replicates for the local region containing their target sequences. However, regions of concordant aberration can be short enough to be detected by only one, or very few, array elements. We describe a method called Multiple Sample Analysis for assessing the significance of concordant genomic aberrations across multiple experiments that does not require a-priori definition of aberration calls for each sample. If there are multiple samples, representing a class, then by exploiting the replication across samples our method can detect concordant aberrations at much higher resolution than can be derived from current single sample approaches. Additionally, this method provides a meaningful approach to addressing population-based questions such as determining important regions for a cancer subtype of interest or determining regions of copy number variation in a population. Multiple Sample Analysis also provides single sample aberration calls in the locations of significant concordance, producing high resolution calls per sample, in concordant regions. The approach is demonstrated on a dataset representing a challenging but important resource: breast tumors that have been formalin-fixed, paraffin-embedded, archived, and subsequently UV-laser capture microdissected and hybridized to two-channel BAC arrays using an amplification protocol. We demonstrate the accurate detection on simulated data, and on real datasets involving known regions of aberration within subtypes of breast cancer at a resolution consistent with that of the array. Similarly, we apply our method to previously published datasets, including a 250K SNP array, and verify known results as well as detect novel regions of concordant aberration. The algorithm has been fully implemented and tested and is freely available as a Java application at http://www.cbil.upenn.edu/MSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号