首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Summary The cdc2 + gene function plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. Recessive temperature-sensitive mutations in the cdc2 gene cause cell cycle arrest when shifted to the restrictive temperature, while a second class of mutations within the cdc2 gene causes a premature advancement into mitosis. Previously the cdc2 + gene has been cloned and has been shown to encode a 34 kDa phosphoprotein with in vitro protein kinase activity. Here we describe the cloning of 11 mutant alleles of the cdc2 gene using two simple methods, one of which is presented here for the first time. We have sequenced these alleles and find a variety of single amino acid substitutions mapping throughtout the cdc2 protein. Analysis of these mutations has identified a number of regions within the cdc2 protein that are important for cdc2 + activity and regulation. These include regions which may be involved in the interaction of the cdc2 + gene product with the proteins encoded by the wee1 +, cdc13 + and suc1 + genes.  相似文献   

5.
When the fission yeastSchizosaccharomyces pombe is starved for nitrogen, the cells are arrested in the G1 phase, enter the G0 phase and initiate sexual development. Theste13 mutant, however, fails to undergo a G1 arrest when starved for nitrogen and since this mutant phenotype is not suppressed by a mutation in adenylyl cyclase (cyr1), it would appear thatste13 + either acts independently of the decrease in the cellular cAMP level induced by starvation for nitrogen, or functions downstream of this controlling event. We have used functional complementation to clone theste13 + gene from anS. pombe genomic library and show that its disruption is not lethal, indicating that, while the gene is required for sexual development, it is not essential for cell growth. Nucleotide sequencing predicts thatste13 + should encode a protein of 485 amino acids in which the consensus motifs of ATP-dependent RNA helicases of the DEAD box family are completely conserved. Point mutations introduced into these consensus motifs abolished theste13 + functions. The predicted Ste13 protein is 72% identical to theDrosophila melanogaster Me31B protein over a stretch of 391 amino acids. ME31B is a developmentally regulated gene that is expressed preferentially in the female germline and may be required for oogenesis. Expression of ME31B cDNA inS. pombe suppresses theste13 mutation. These two evolutionarily conserved genes encoding putative RNA helicases may play a pivotal role in sexual development.  相似文献   

6.
《朊病毒》2013,7(4):141-144
Our laboratory recently reported a novel prion [SWI+], in the budding yeast Saccharomyces cerevisiae. [SWI+] is the prion form of Swi1, a component of the SWI/SNF chromatin-remodeling complex. Cells harboring [SWI+] exhibit a partial loss-of-function phenotype for SWI/SNF, which can be easily assayed by poor growth on some non-fermentable carbon sources such as raffinose. Swi1 is unique among yeast prion proteins for its nuclear localization and the fact that it comprises part of a large, multi-subunit protein complex. The discovery of [SWI+] demonstrates for the first time a link between prion function and chromatin remodeling, implying a possible role for prions in gene regulation. We believe that the unique features of this novel yeast prion will provide new insight into prion biology.  相似文献   

7.
Thecdc2 + gene product (p34cdc2) is a protein kinase that regulates entry into mitosis in all eukaryotic cells. The role that p34cdc2 plays in the cell cycle has been extensively investigated in a number of organisms, including the fission yeastSchizosaccharomyces pombe. To study the degree of functional conservation among evolutionarily distant p34cdc2 proteins, we have constructed aS. pombe strain in which the yeastcdc2 + gene has been replaced by itsDrosophila homologue CDC2Dm (theCDC2Dm strain). ThisCDC2Dm S. pombe strain is viable, capable of mating and producing four viable meiotic products, indicating that the fly p34CDC2Dm recognizes all the essentialS. pombe cdc2 + substrates, and that it is recognized by cyclin partners and other elements required for its activity. The p34CDC2Dm protein yields a lethal phenotype in combination with the mutant B-type cyclin p56cdc13-117, suggesting that thisS. pombe cyclin might interact less efficiently with theDrosophila protein than with its native p34cdc2 counterpart. ThisCDC2Dm strain also responds to nutritional starvation and to incomplete DNA synthesis, indicating that proteins involved in these signal transduction pathways, interact properly with p34CDC2Dm (and/or that p34cdc2-independent pathways are used). TheCDC2Dm gene produces a ‘wee’ phenotype, and it is largely insensitive to the action of theS. pombe weel + mitotic inhibitor, suggesting thatDrosophila weel + homologue might not be functionally conserved. ThisCDC2Dm strain is hypersensitive to UV irradiation, to the same degree asweel-deficient mutants. A strain which co-expresses theDrosophila and yeastcdc2+ genes shows a dominantwee phenotype, but displays a wild-type sensitivity to UV irradiation, suggesting that p34cdc2 triggers mitosis and influences the UV sensitivity by independent mechanisms. Communicated by B. J. Kilbey  相似文献   

8.
We describe a screen to isolate cDNAs encoding Drosophila mitosis inhibitors capable of suppressing the mitotic catastrophe phenotype resulting in Schizosaccharomyces pombe from the combination of the weel-50 mutation with either a deletion allele of mil1, or with overexpression of cdc25 +. One plasmid was isolated which could suppress the temperature sensitive lethality of both these strains. The cDNA in this plasmid encodes a protein highly homologous to the DEAD-box family of ATP-dependent RNA helicases, rather than to protein kinases as might be expected. It is possible that the RNA helicase described here may regulate entry into mitosis by down regulating the expression of other genes whose activity may be rate-limiting for entry into mitosis.  相似文献   

9.
The proteins belonging to SWI2/SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. We have identified a human gene with a putative DNA binding domain, which belongs to the INO80 subfamily of SWI2/SNF2 proteins. Here we report the cloning, expression, and functional activity of the domains from hINO80 gene both in terms of the DNA dependent ATPase as well as DNA binding activity. A differential expression of the various domains within this gene is detected in human tissues while a ubiquitous expression is detected in mice. The intranuclear localization is demonstrated using antibodies directed against the DBINO domain of hINO80.  相似文献   

10.
Summary The cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a 34 kDa phosphoprotein with serine/threonine protein kinase activity that acts as the key component in regulation of the eukaryotic cell cycle. We used a repressible promoter fused to the cdc2 cDNA to isolate conditionally dominant negative mutants of cdc2. One of these mutants, DL5, is described in this paper. Overexpression of the mutant protein in a wild-type cdc2 background is lethal and confers cell cycle arrest with a typical cdc phenotype. Sequencing of the mutant cdc2 gene revealed a single amino acid substitution in a region highly conserved in cdc2-like proteins. The mutant protein exhibits no protein kinase activity, but is able to bind a component(s) required for an active protein kinase complex and thereby prevents binding of this component(s) to the co-existing wild-type cdc2 protein. We also demonstrate that S. pombe p34cdc2 contains no phosphoserine.  相似文献   

11.
12.
13.
14.
TheSchizosaccharomyces pombe rhp51 + gene encodes a recombinational repair protein that shares significant sequence identities with the bacterial RecA and theSaccharomyces cerevisiae RAD51 protein. Levels ofrhp51 + mRNA increase following several types of DNA damage or inhibition of DNA synthesis. Anrhp51::ura4 fusion gene was used to identify the cis-acting promoter elements involved in regulatingrhp51 + expression in response to DNA damage. Two elements, designated DRE1 and DRE2 (fordamage-responsiveelement), match a decamer consensus URS (upstream repressing sequence) found in the promoters of many other DNA repair and metabolism genes fromS. cerevisiae. However, our results show that DRE1 and DRE2 each function as a UAS (upstream activating sequence) rather than a URS and are also required for DNA-damage inducibility of the gene. A 20-bp fragment located downstream of both DRE1 and DRE2 is responsible for URS function. The DRE1 and DRE2 elements cross-competed for binding to two proteins of 45 and 59 kDa. DNase I footprint analysis suggests that DRE1 and DRE2 bind to the same DNA-binding proteins. These results suggest that the DRE-binding proteins may play an important role in the DNA-damage inducibility ofrhp51 + expression.  相似文献   

15.
Yeast (Saccharomyces cerevisiae) SWI/SNF is a prototype for a large family of ATP-dependent chromatin-remodeling enzymes that facilitate numerous DNA-mediated processes. Swi2/Snf2 is the catalytic subunit of SWI/SNF, and it is the founding member of a novel subfamily of the SF2 superfamily of DNA helicase/ATPases. Here we present a functional analysis of the diagnostic set of helicase/ATPase sequence motifs found within all Swi2p/Snf2p family members. Whereas many of these motifs play key roles in ATP binding and/or hydrolysis, we identify residues within conserved motif V that are specifically required to couple ATP hydrolysis to chromatin-remodeling activity. Interestingly, motif V of the human Swi2p/Snf2p homolog, Brg1p, has been shown to be a possible hot spot for mutational alterations associated with cancers.  相似文献   

16.
17.
We previously identified four nuclear genes (caf1 + to caf4 +) in Schizosaccharomyces pombe, mutations in which can confer caffeine resistance. Here we report the cloning and sequencing of caf1 +, caf2 + and caf4 +. All three genes are allelic to genes (hba1 + , crm1 + and trr1 + , respectively) involved in multidrug resistance mechanisms or in stress response systems. In agreement with this the caffeine-resistant mutants caf1(hba1)-21, caf2(crm1)-3 and caf4(trr1)-83 are also resistant to brefeldin. Disruption of caf1(hba1) + and caf4(trr1) + makes cells sensitive to high pH. The overlapping ranges of pleiotropic effects and the genetic interaction detected between caf1(hba1) + and caf2(crm1) + suggest that the three genes function in interlinked systems. Received: 9 March 1998 / Accepted: 16 September 1998  相似文献   

18.
19.
The organization of the actin cytoskeleton plays an integral role in cell morphogenesis of all eukaryotes. We have isolated a temperature-sensitive mutant in Schizosaccharomyces pombe, wat1-1, in which acting patches are delocalized, resulting in an elliptically shaped cell phenotype. Molecular cloning and DNA sequencing of wat1 + showed that the gene encodes a 314 residue protein containing WD-40 repeats. Cells lacking wat1 + are slow growing but viable at 25° C and temperature-sensitive for growth above 33° C. At restrictive temperature, wat1-d strains are phenotypically indistinguishable from wat1-1. When combined with a deletion for the wat1 + gene, cdc mutants failed to elongate at restrictive temperature and exhibited alterations in actin patch localization. This analysis suggests that wat1 + is required directly or indirectly for polarized cell growth in S. pombe. Wat1p and a functional, epitope-tagged, version of Wat1p can be overproduced without inducing alterations in cell morphology. Received: 18 September 1996 / Accepted: 22 October 1996  相似文献   

20.
SWI2/SNF2 chromatin remodeling ATPases play important roles in plant and metazoan development. Whereas metazoans generally encode one or two SWI2/SNF2 ATPase genes, Arabidopsis encodes four such chromatin regulators: the well‐studied BRAHMA and SPLAYED ATPases, as well as two closely related non‐canonical SWI2/SNF2 ATPases, CHR12 and CHR23. No developmental role has as yet been described for CHR12 and CHR23. Here, we show that although strong single chr12 or chr23 mutants are morphologically indistinguishable from the wild type, chr12 chr23 double mutants cause embryonic lethality. The double mutant embryos fail to initiate root and shoot meristems, and display few and aberrant cell divisions. Weak double mutant embryos give rise to viable seedlings with dramatic defects in the maintenance of both the shoot and the root stem cell populations. Paradoxically, the stem cell defects are correlated with increased expression of the stem cell markers WUSCHEL and WOX5. During subsequent development, the meristem defects are partially overcome to allow for the formation of very small, bushy adult plants. Based on the observed morphological defects, we named the two chromatin remodelers MINUSCULE 1 and 2. Possible links between minu1 minu2 defects and defects in hormone signaling and replication‐coupled chromatin assembly are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号