首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The therapeutic mechanisms of lithium for treating bipolar mood disorder remain poorly understood. Recent studies demonstrate that lithium has neuroprotective actions against a variety of insults. Here, we studied neuroprotective effects of lithium against excitotoxicity in cultured cerebral cortical neurons. Glutamate-induced excitotoxicity in cortical neurons was exclusively mediated by NMDA receptors. Pre-treatment of cortical neurons with LiCl time-dependently suppressed excitotoxicity with maximal protection after 6 days of pre-treatment. Significant protection was observed at the therapeutic and subtherapeutic concentration of 0.2-1.6 mm LiCl with almost complete protection at 1 mM. Neuroprotection was also elicited by valproate, another major mood-stabilizer. The neuroprotective effects of lithium coincided with inhibition of NMDA receptor-mediated calcium influx. Lithium pre-treatment did not alter total protein levels of NR1, NR2A and NR2B subunits of NMDA receptors. However, it did markedly reduce the level of NR2B phosphorylation at Tyr1472 and this was temporally associated with its neuroprotective effect. Because NR2B tyrosine phosphorylation has been positively correlated with NMDA receptor-mediated synaptic activity and excitotoxicity, the suppression of NR2B phosphorylation by lithium is likely to result in the inactivation of NMDA receptors and contributes to neuroprotection against excitotoxicity. This action could also be relevant to its clinical efficacy for bipolar patients.  相似文献   

2.
  总被引:1,自引:0,他引:1  
Several G protein-coupled receptors (GPCRs) mediate neuronal cell migration and survival upon activation by their native peptide ligands but activate death-signaling pathways when activated by certain non-native ligands. In cultured neurons, we recently described expression of the unique seven-transmembrane (7TM) -G protein-coupled receptor, APJ, which is also strongly expressed in neurons in the brain and various cell types in other tissues. We now demonstrate that the endogenous APJ peptide ligand apelin activates signaling pathways in rat hippocampal neurons and modulates neuronal survival. We found that (i) both APJ and apelin are expressed in hippocampal neurons; (ii) apelin peptides induce phosphorylation of the cell survival kinases AKT and Raf/ERK-1/2 in hippocampal neurons; and (iii) apelin peptides protect hippocampal neurons against NMDA receptor-mediated excitotoxicity, including that induced by human immunodeficiency virus type 1. Thus, apelin/APJ signaling likely represents an endogenous hippocampal neuronal survival response, and therefore apelin should be further investigated as a potential neuroprotectant against hippocampal injury.  相似文献   

3.
A role for polyamines in retinal ganglion cell excitotoxic death   总被引:1,自引:0,他引:1  
Neuronal death due to excessive activation of N -methyl- d -aspartate (NMDA) receptors is a hallmark of neurodegenerative diseases. The polyamines: putrescine, spermine, and spermidine, bind to specific sites on the NMDA receptor and promote its activation, but their role in NMDA-induced neuronal death is ill defined. In this study, we characterized the role of polyamines in excitotoxic death of retinal ganglion cells (RGCs), a population of central neurons susceptible to NMDA-induced damage. Our data show that endogenous arginase I, the rate limiting enzyme for polyamine biosynthesis, is expressed in the intact, adult retina. Intraocular injection of NMDA visibly increased arginase I expression in Müller cells, the predominant glial cell-type in the mammalian retina. Inhibition of polyamine synthesis using di-fluoro-methyl-ornithine (DFMO) was markedly neuroprotective, while injection of exogenous polyamines in conjunction with NMDA exacerbated RGC death. Blockade of the polyamine binding sites on NMDA receptors using the non-competitive antagonist ifenprodil was neuroprotective, suggesting that polyamines contribute to excitotoxic death, at least partly, by binding to NMDA receptors. Importantly, we also demonstrate that NMDA leads to activation of both the Erk1/2 and PI3 K/Akt pathways, but only the PI3 K/Akt kinase was required for di-fluoro-methyl-ornithine-induced RGC survival. In summary, our study reveals that polyamines modulate neuronal death in the retina via different mechanisms that potentiate NMDA-triggered excitotoxicity.  相似文献   

4.
Glutamate-induced neuronal damage is mainly caused by overactivation of N-methyl-D-aspartate (NMDA) receptors.Conversely,normal physiological brain function and neuronal survival require adequate activ...  相似文献   

5.
Although the potential of adult neural stem cells to repair damage via cell replacement has been widely reported, the ability of endogenous stem cells to positively modulate damage is less well studied. We investigated whether medium conditioned by adult hippocampal stem/progenitor cells altered the extent of excitotoxic cell death in hippocampal slice cultures. Conditioned medium significantly reduced cell death following 24 h of exposure to 10 μM NMDA. Neuroprotection was greater in the dentate gyrus, a region neighboring the subgranular zone where stem/progenitor cells reside compared with pyramidal cells of the cornis ammonis. Using mass spectrometric analysis of the conditioned medium, we identified a pentameric peptide fragment that corresponded to residues 26–30 of the insulin B chain which we termed 'pentinin'. The peptide is a putative breakdown product of insulin, a constituent of the culture medium, and may be produced by insulin-degrading enzyme, an enzyme expressed by the stem/progenitor cells. In the presence of 100 pM of synthetic pentinin, the number of mature and immature neurons killed by NMDA-induced toxicity was significantly reduced in the dentate gyrus. These data suggest that progenitors in the subgranular zone may convert exogenous insulin into a peptide capable of protecting neighboring neurons from excitotoxic injury.  相似文献   

6.
Several possible mechanisms for cysteine toxicity on rat cerebellar granule cells were studied and compared with the excitotoxic effect of glutamate. It was shown that the excitotoxic potency of both cysteine and glutamate increased in the presence of elevated concentrations, of bicarbonate or increased pH. Pharmacological studies showed that the cysteine toxicity was specifically coupled to the NMDA receptor, whereas the glutamate toxicity was mediated to a smaller extent also by non-NMDA receptors. Treatment of cerebellar granule cells with cysteine led to an increased extracellular level of glutamate. In addition, cysteine sensitized NMDA receptors by reducing disulfide bonds in the receptor to sulfhydryl groups. A mechanism for cysteine excitotoxicity may therefore be formation of cysteine-sensitized NMDA receptors that are stimulated either by cysteine and/or by endogenous glutamate. This mechanism may also be important for the effects observed during regulated physiological release of cysteine.  相似文献   

7.
    
The vertebrate retina is a “genuine neural center” (Ramón y Cajal), in which glutamate is a major excitatory neurotransmitter. Both N-methyl-d-aspartate (NMDA) and non-NMDA receptors are expressed in the retina. Although non-NMDA receptors and/or metabotropic glutamate receptors are generally thought to be responsible for mediating the transfer of visual signals in the outer retina, there is recent evidence suggesting that NMDA receptors are also expressed in photoreceptors, as well as horizontal and bipolar cells. In the inner retina, NMDA receptors, in addition to other glutamate receptor subtypes, are abundantly expressed to mediate visual signal transmission from bipolar cells to amacrine and ganglion cells, and could be involved in modulation of inhibitory feedback from amacrine cells to bipolar cells. NMDA receptors are extrasynaptically expressed in ganglion cells (and probably amacrine cells) and may play physiological roles in a special mode. Activity of NMDA receptors may be modulated by neuromodulators, such as d-serine and others. This article discusses retinal excitotoxicity mediated by NMDA receptors.  相似文献   

8.
NMDA receptors play critical roles in synaptic modulation and neurological disorders. In this study, we investigated the developmental changes in NR2 cleavage by NMDA receptor-activated calpain in cultured cortical and hippocampal neurons. Calpain activity increased with development, associated with increased expression of NMDA receptors but not of calpain I. The activation of calpain in immature and mature cortical cultures was inhibited by antagonists of NR1/2B and NR1/2A/2B receptors, whereas the inhibition of NR1/2B receptors did not alter calpain activation in mature hippocampal cultures. The degradation of NR2 subunits by calpain differed with developmental age. NR2A was not a substrate of calpain in mature hippocampal cultures, but was cleaved in immature cortical and hippocampal cultures. NR2B degradation by calpain in cortical cultures decreased with development, but the level of degradation of NR2B in hippocampal cultures did not change. The kinetics of NMDA receptor-gated whole cell currents were also modulated by calpain activation in a manner that varied with developmental stage in vitro. In early (but not later) developmental stages, calpain activation altered the NMDA-evoked current rise time and time constants for both desensitization and deactivation. Our data suggest that the susceptibility of the NMDA receptor to cleavage by calpain varies with neuronal maturity in a manner that may alter its electrophysiological properties.  相似文献   

9.
Specific proteolysis of the NR2 subunit at multiple sites by calpain   总被引:4,自引:0,他引:4  
The NMDA subtype of glutamate receptor plays an important role in the molecular mechanisms of learning, memory and excitotoxicity. NMDA receptors are highly permeable to calcium, which can lead to the activation of the calcium-dependent protease, calpain. In the present study, the ability of calpain to modulate NMDA receptor function through direct proteolytic digestion of the individual NMDA receptor subunits was examined. HEK293t cells were cotransfected with the NR1a/2A, NR1a/2B or NR1a/2C receptor combinations. Cellular homogenates of these receptor combinations were prepared and digested by purified calpain I in vitro. All three NR2 subunits could be proteolyzed by calpain I while no actin or NR1a cleavage was observed. Based on immunoblot analysis, calpain cleavage of NR2A, NR2B and NR2C subunits was limited to their C-terminal region. In vitro calpain digestion of fusion protein constructs containing the C-terminal region of NR2A yielded two cleavage sites at amino acids 1279 and 1330. Although it has been suggested that calpain cleavage of the NMDA receptor may act as a negative feedback mechanism, the current findings demonstrated that calpain cleavage did not alter [(125)I]MK801 binding and that receptors truncated to the identified cleavage sites had peak intracellular calcium levels, (45)Ca uptake rates and basal electrophysiological properties similar to wild type.  相似文献   

10.
Cerebellar Purkinje cells (PC) are particularly vulnerable to ischemic injury and excitotoxicity, although the molecular basis of this sensitivity remains unclear. We tested the hypothesis that ischemia causes rapid down-regulation of GABA(A) receptors in cerebellar PC, thereby increasing susceptibility to excitotoxicity. Oxygen-glucose deprivation (OGD) caused a decline in functional GABA(A) receptors, within the first hour of re-oxygenation. Decreased amplitude of miniature inhibitory post-synaptic potentials confirmed that OGD caused a significant decrease in functional synaptic GABA(A) receptors and quantitative Western blot analysis demonstrated the loss of GABA(A) receptor current was associated with a decline in total receptor protein. Interestingly, the potent neuroprotectant allopregnanolone (ALLO) prevented the decline in GABA(A) receptor current and protein. Consistent with our in vitro data, global ischemia in mice caused a significant decline in total cerebellar GABA(A) receptor protein and PC specific immunoreactivity. Moreover, ALLO provided strong protection of PC and prevented ischemia-induced decline in GABA(A) receptor protein. Our findings indicate that ischemia causes a rapid and sustained loss of GABA(A) receptors in PC, whereas ALLO prevents the decline in GABA(A) receptors and protects against ischemia-induced damage. Thus, interventions which prevent ischemia-induced decline in GABA(A) receptors may represent a novel neuroprotective strategy.  相似文献   

11.
    
Spreading depolarization (SD) has emerged as an important contributor to the enlargement of acute brain injuries. We previously showed that the N-methyl-D-aspartate receptor antagonist ketamine was able to prevent deleterious consequences of SD in brain slices, under conditions of metabolic compromise. The current study aimed to extend these observations into an in vivo stroke model, to test whether gradients of metabolic capacity lead to differential accumulation of calcium (Ca2+) following SD. In addition, we tested whether ketamine protects vulnerable tissuewhile allowing SD to propagate through surrounding undamaged tissue. Focal lesions were generated using a distal middle cerebral artery occlusion in mice, and clusters of SD were generated at 20 min intervals with remote microinjection of potassium chloride. SDs invading peri-infarct regions had significantly different consequences, depending on the distance from the infarct core. Proximal to the lesion, Ca2+ transients were extended, as compared with responses in better-perfused tissue more remote from the lesion. Extracellular potential shifts were also longer and hyperemia responses were reduced in proximal regions following SDs. Consistent with in vitro studies, ketamine, at concentrations that did not abolish the propagation of SD, reduced the accumulation of intracellular Ca2+ in proximal regions following an SD wave. These findings suggest that deleterious consequences of SD can be targeted in vivo, without requiring outright block of SD initiation and propagation.  相似文献   

12.
The aim of this work was to investigate the potential neuroprotective effects of the metabotropic glutamate receptor 5 (mGlu5R) antagonist 2-Methyl-6-(phenylethynyl)-pyridine (MPEP) towards quinolinic acid (QA)-induced striatal excitoxicity. Intrastriatal MPEP (5 nmol/0.5 micro L) significantly attenuated the body weight loss, the electroencephalographic alterations, the impairment in spatial memory and the striatal damage induced by bilateral striatal injection of QA (210 nmol/0.7 micro L). In a second set of experiments, we aimed to elucidate the mechanisms underlying the neuroprotective effects of MPEP. In microdialysis studies in naive rats MPEP (80-250 micro m through the dialysis probe) significantly reduced the increase in glutamate levels induced by 5 mm QA. In primary cultures of striatal neurons MPEP (50 micro m) reduced the toxicity induced by direct application of glutamate [measured as release of lactate dehydrogenase [LDH]). Finally, we found that 50 micro m MPEP was unable to directly block NMDA-induced effects (namely field potential reduction in corticostriatal slices, as well as LDH release and intracellular calcium increase in striatal neurons). We conclude that: (i) MPEP has neuroprotective effects towards QA-induced striatal excitotoxicity; (ii) both pre- and post-synaptic mechanisms are involved; (iii) the neuroprotective effects of MPEP do not appear to involve a direct blockade of NMDA receptors.  相似文献   

13.
Over-stimulation of NMDA receptors (NMDARs) is involved in many neurodegenerative disorders. Thus, developing safe NMDAR antagonists is of high therapeutic interest. GK11 is a high affinity uncompetitive NMDAR antagonist with low intrinsic neurotoxicity, shown to be promising for treating CNS trauma. In the present study, we investigated the molecular basis of its interaction with NMDARs and compared this with the reference molecule MK801. We show, on primary cultures of hippocampal neurons, that GK11 exhibits neuroprotection properties similar to those of MK801, but in contrast with MK801, GK11 is not toxic to neurons. Using patch-clamp techniques, we also show that on NR1a/NR2B receptors, GK11 totally blocks the NMDA-mediated currents but has a six-fold lower IC50 than MK801. On NR1a/NR2A receptors, it displays similar affinity but fails to totally prevent the currents. As NR2A is preferentially localized at synapses and NR2B at extrasynaptic sites, we investigated, using calcium imaging and patch-clamp approaches, the effects of GK11 on either synaptic or extrasynaptic NMDA-mediated responses. Here we demonstrate that in contrast with MK801, GK11 better preserve the synaptic NMDA-mediated currents. Our study supports that the selectivity of GK11 for NR2B containing receptors accounts contributes, at least partially, for its safer pharmacological profile.  相似文献   

14.
NMDA receptors play dual and opposing roles in neuronal survival by mediating the activity-dependent neurotrophic signaling and excitotoxic cell death via synaptic and extrasynaptic receptors, respectively. In this study, we demonstrate that the aryl hydrocarbon receptor (AhR), also known as the dioxin receptor, is involved in the expression and the opposing activities of NMDA receptors. In primary cultured cortical neurons, we found that NMDA excitotoxicity is significantly enhanced by an AhR agonist 2,3,7,8-tetrachlorodibenzo- p -dioxin, and AhR knockdown with small interfering RNA significantly reduces NMDA excitotoxicity. AhR knockdown also significantly reduces NMDA-increases intracellular calcium concentration, NMDA receptor expression and surface presentation, and moderately decreases the NMDA receptor-mediated spontaneous as well as miniature excitatory post-synaptic currents. However, AhR knockdown significantly enhances the bath NMDA application– but not synaptic NMDA receptor-induced brain-derived neurotrophic factor (BDNF) gene expression, and activating AhR reduces the bath NMDA-induced BDNF expression. Furthermore, AhR knockdown reveals the calcium dependency of NMDA-induced BDNF expression and the binding activity of cAMP-responsive element binding protein (CREB) and its calcium-dependent coactivator CREB binding protein (CBP) to the BDNF promoter upon NMDA treatment. Together, our results suggest that AhR opposingly regulates NMDA receptor-mediated excitotoxicity and neurotrophism possibly by differentially regulating the expression of synaptic and extrasynaptic NMDA receptors.  相似文献   

15.
The ability of cannabinoid CB(1) receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB(1) receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB(1) /CB(2) receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB(1) and SR144528 for CB(2) ) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA-induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB(1) receptor function. In contrast, blockade of CB(1), but not CB(2), receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest a critical involvement of CB(1) receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo.  相似文献   

16.
Chondroitin sulfate (CS) is a major microenvironmental molecule in the CNS, and there have been few reports about its neuroprotective activity. As neuronal cell death by excitotoxicity is a crucial phase in many neuronal diseases, we examined the effect of various CS preparations on neuronal cell death induced by the excitotoxicity of glutamate analogs. CS preparations were added to cultured neurons before and after the administration of glutamate analogs. Then, the extents of both neuronal cell death and survival were estimated. Pre-administration of a highly sulfated CS preparation, CS-E, significantly reduced neuronal cell death induced by not only NMDA but also ( S )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate. Neither CS preparations other than CS-E nor other highly sulfated polysaccharides such as heparin and dextran sulfate exerted any neuroprotective effects. NMDA-induced current in neurons was not changed by pre-administration of CS-E, but the pattern of protein-tyrosine phosphorylation was changed. In addition, the elevation of caspase 3 activity was significantly suppressed in CS-E-treated neurons. These results indicate that CS-E prevents neuronal cell death mediated by various glutamate receptors, and suggest that phosphorylation-related intracellular signals and the suppression of caspase 3 activation are implicated in neuroprotection by CS-E.  相似文献   

17.
  总被引:3,自引:0,他引:3  
Ebselen is a seleno-organic compound currently in clinical trials for the treatment of ischemic stroke and subarachnoid hemorrhage. Its putative mode of action as a neuroprotectant is via cyclical reduction and oxidation reactions, in a manner akin to glutathione peroxidase. For this reason, we have investigated the effects of ebselen on the redox-sensitive NMDA receptor. We have found that ebselen readily reversed dithiothreitol (DTT) potentiation of NMDA-mediated currents in cultured neurons and in Chinese hamster ovary (CHO) cells expressing wild-type NMDA NR1/NR2B receptors. In contrast, ebselen was unable to modulate NMDA-induced currents in neurons previously exposed to the thiol oxidant 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), or in CHO cells expressing a mutant receptor lacking the NR1 redox modulatory site, suggesting that ebselen oxidizes the NMDA receptor via this site. In addition, ebselen was substantially less effective in modifying NMDA responses in neurons exposed to alkylating agent N-ethylmaleimide (NEM) following DTT treatment. Ebselen also reversed DTT block of carbachol-mediated currents in Cos-7 cells expressing the alpha(2)beta delta epsilon subunits of the acetylcholine receptor, an additional redox-sensitive ion channel. Ebselen was observed to significantly increase cell viability following a 30-min NMDA exposure in cultured neurons. In contrast, other more typical antioxidant compounds did not afford neuroprotection in a similar paradigm. We conclude that ebselen may be neuroprotective in part due to its actions as a modulator of the NMDA receptor redox modulatory site.  相似文献   

18.
19.
The purines ATP and adenosine can act as a coordinated team of transmitters. As extracellular adenosine is frequently derived from the enzymatic dephosphorylation of released ATP, the distinct actions of the two purines can be synchronized. In retinal ganglion cells (RGCs), stimulation of the P2X7 receptor for ATP leads to increased intracellular Ca2+ and death. Here we define the contrasting effects of adenosine and identify protective actions mediated by the A3 receptor. Adenosine attenuated the rise in Ca2+ produced by the P2X7 agonist 3'-O-(4-benzoylbenzoyl)ATP (BzATP). Adenosine was also neuroprotective, increasing the survival of ganglion cells exposed to BzATP. The A3 adenosine receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronimide (Cl-IB-MECA) mimicked the inhibition of the Ca2+ rise, whereas the A3 antagonist 3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191) reduced the protective effects of adenosine. Both Cl-IB-MECA and a second A3 receptor agonist IB-MECA reduced the cell loss triggered by BzATP. The actions of BzATP were mimicked by ATPgammaS, but not by ATP. In summary, adenosine can stop the rise in Ca2+ and cell death resulting from stimulation of the P2X7 receptor on RGCs, with the A3 adenosine receptor contributing to this protection. Hydrolysis of ATP into adenosine and perhaps inosine shifts the balance of purinergic action from that of death to the preservation of life.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号