首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
N P Curthoys  R P Hughey 《Enzyme》1979,24(6):383-403
Rat renal gamma-glutamyltranspeptidase is an intrinsic membrane glycoprotein. The larger of its two subunits is apparently folded into two distinguishable domains which are separated by a protease-sensitive sequence of amino acids. Membrane binding of gamma-glutamyltranspeptidase results from the hydrophobic interaction of the nonpolar domain of the amphipathic subunit with the lipid bilayer. Localization of at least a portion of the gamma-glutamyl binding site on the smaller subunit limits the active site of the enzyme to one side of the membrane. Within the kidney, the enzyme is primarily associated with the luminal surface of the brush border membrane of the proximal straight tubule. Comparison of the kinetic properties of gamma-glutamyltranspeptidase with the pH and the substrates available within the tubular fluid suggests that the physiologically significant reaction catalyzed by the transpeptidase is the hydrolysis of glutathione and its S-derivatives. The glutathionemia and glutathionuria observed in a patient who lacks detectable gamma-glutamyltranspeptidase activity and in mice following specific inhibition of transpeptidase, support the hypothesis that the enzyme plays a major role in glutathione catabolism. It now appears that the activities attributed to the gamma-glutamyl cycle do not participate in amino acid transport, but instead constitute three separate metabolic pathways; the intracellular synthesis of glutathione, the intracellular degradation of gamma-glutamyl peptides and the extracellular hydrolysis of glutathione. The finding that various cells release reduced and oxidized glutathione indicates that glutathione turnover may be a process of intracellular synthesis, excretion and extracellular degradation.  相似文献   

2.
Previously it was found that the proteolytic processing of precursors of gamma-glutamyltranspeptidase takes place on the brush border membrane of the kidney. The activity of the processing protease in purified brush border membranes was examined using endogenous substrates labeled with [3H]fucose and [35S]methionine. On incubation with brush border membranes in vitro, the precursors were converted stoichiometrically to two subunits, and the reaction followed first order kinetics with a rate constant k of -0.048 min-1. The enzyme responsible for this conversion was membrane-bound, had a weakly basic optimum pH and was inhibited by serine protease inhibitors. These results suggest that the precursor of gamma-glutamyltranspeptidase is processed to the mature form by a serine protease bound to the brush border membrane of kidney.  相似文献   

3.
An iron chelate, ferric nitrilotriacetate (Fe3+-NTA), is nephrotoxic and also carcinogenic to the kidney in experimental animals. Iron-promoted lipid peroxidation in the proximal tubules is thought to be responsible for the pathologic process. In the present study, iron-promoted lipid peroxidation, with thiobarbituric acid (TBA) formation as an indication, in the tubular surface was simulated in vitro using rat kidney brush border membrane vesicles and the results were compared with those using linoleate micelles and rat liver microsomal lipid liposomes. Addition of ascorbate, cysteine, or dithiothreitol to the Fe3+-NTA solution resulted in consumption of dissolved oxygen and promoted the lipid peroxidation in the micelles and in the liposomes. In contrast, addition of glutathione to the Fe3+-NTA solution caused only sluggish oxygen consumption and far less peroxidation in these lipid systems. When the brush border membrane vesicles were used for the peroxidation substrate, Fe3+-NTA and glutathione could promote TBA formation at a rate comparable to that elicited by Fe3+-NTA with cysteine or dithiothreitol. Acivicin, a gamma-glutamyl transpeptidase inhibitor, suppressed the peroxidation of the brush border membrane vesicles promoted by Fe3+-NTA and glutathione. These results suggest the following mechanism of proximal tubular cell lipid peroxidation promoted by Fe-NTA: Fe3+-NTA filtered through glomeruli is rapidly reduced by cysteine and Fe2+-NTA starts lipid peroxidation at the site, leading to proximal tubular necrosis. Cysteine is amply supplied by the decomposition of glutathione within the lumen by the action of gamma-glutamyl transpeptidase and dipeptidase situated at the proximal tubular brush border membrane.  相似文献   

4.
1. Intestinal brush border membrane vesicles have been isolated form Rana catesbeiana tadpole. 2. Electron microscopy of brush border membrane vesicles demonstrates a fairly homogenous preparation of vesicles, some of them still containing electron dense material. 3. The dense vesicles probably comprise both microvillus core and membrane. 4. Negative staining of vesicles reveals the presence of knob-like structures (particles) covering the outer surface of the membrane. 5. The membranous fraction is characterized by a high specific activity of alkaline phosphatase, trehalase, glucoamylase, maltase and gamma-glutamyltranspeptidase.  相似文献   

5.
《Molecular membrane biology》2013,30(3-4):203-219
Brush border membrane vesicles were isolated from rat kidney cortex by differential centrifugation in the presence of 10 mM calcium. Their properties were compared to brush border vesicles isolated by free-flow electrophoresis. By the calcium precipitation method membrane vesicles were obtained in a shorter time with a similar enrichment of brush border marker enzymes (11- to 12-fold for alkaline phosphatase and maltase), with a similarly reduced activity of the marker enzyme for basal-lateral plasma membranes and an almost identical protein composition as revealed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The transport properties of the two membrane preparations for D-glucose, L-phenylalanine, and phosphate are essentially the same; there is some indication for a lower sodium permeability of the vesicles prepared by the calcium precipitation method. The latter vesicles were also shown to exhibit sodium gradient stimulated uptake of L-glutamate.  相似文献   

6.
Phosphate-independent glutaminase can be quantitatively solubilized from a microsomal preparation of rat kidney by treatment with papain. Subsequent gel filtration and chromatography on quaternary aminoethyl (QAE)-Sephadex and hydroxylapatite yield a 200-fold purified preparation of this glutaminase. The purified enzyme also hydrolyzes gamma-glutamylhydroxamate and exhibits substrate inhibition at high concentrations of either glutamine or gamma-glutamyhydroxamate, which is partially relieved by increasing concentrations of maleate. Rat kidney phosphate-independent glutaminase reaction is catalyzed by the same enzyme which catalyzes the gamma-glutamyltranspeptidase reaction. The ratio of glutaminase to transpeptidase activities remained constant throughout a 200-fold purification of this enzyme. The observation that the phosphate0independent glutaminase and gamma-glutamyltranspeptidase activities exhibit coincident mobilities during electrophoresis, both before and after extensive treatment with neuraminidase, strongly suggests that both reactions are catalyzed by the same enzyme. This conclusion is strengthened by the observation that maleate and various amino acids have reciprocal effects on the two activities. Maleate increases glutaminase activity and blocks transpeptidation, whereas amino acids activate the transpeptidase but inhibit glutaminase activity. In contrast, the addition of both maleate and alanine resulted in a strong inhibition of both activities. Both activities exhibit a similar distribution in the various regions of the kidney. Recovery of maximal activities in the outer stripe region of the medulla is consistent with previous quantitative microanalysis which indicated that this glutaminase activity is localized primarily in the proximal straight tubule cells. The glutaminase and transpeptidase activities have different pH optima. Examination of the product specificity suggests that decreasing pH also promotes glutaminase activity and that below pH 6.0, this enzyme functions strictly as a glutaminase. Because of the localization of this activity on the brush border membrane, these resuts are consistent with the possibility that the physiological conditions induced by metabolic acidosis could convert this enzyme from a broad specificity transpeptidase to a glutaminase. Therefore, this enzyme could contribute to the increased renal synthesis of ammonia from glutamine which is observed during metabolic acidosis.  相似文献   

7.
E Nsi-Emvo  F Raul 《Enzyme》1984,31(1):45-49
The effects of actinomycin D and of cycloheximide administration have been investigated on the enzyme activities of the jejunal brush border membrane in adult rats after a 48-hour period of starvation. The modifications in the protein and enzyme patterns of the brush border membrane and the incorporation of radiolabelled amino acid in the protein band corresponding to lactase have been studied in the nourished and in the starved animal. The results show that actinomycin D administration did not modify the stimulation of lactase activity caused by starvation whereas cycloheximide completely inhibited this process. The stimulation of lactase activity, in the starved animal, is related to a quantitative increase of the corresponding protein band and with enhanced incorporation of L-[3H]valine in this protein band after separation of brush border proteins by gel electrophoresis. It is concluded that the stimulation of lactase activity observed during starvation is the consequence of de novo synthesis of lactase molecules and that this process is regulated at a translational level. A general hypothesis is proposed in order to clear up partly the mechanism involved in the stimulation of lactase activity by food deprivation in the adult rat.  相似文献   

8.
In order to determine the subcellular site(s) of rat renal gamma-glutamyltranspeptidase propeptide cleavage labeled immunoprecipitates were obtained from preparations of either intracellular membranes or brush border membrane vesicles. Heterodimer accounts for 25% of the label associated with transpeptidase in intracellular membranes from 5 to 40 min postinjection of [35S]methionine, consistent with a cotranslational cleavage of propeptide in the endoplasmic reticulum. Labeled propeptide and heterodimer appear in the brush border membrane fraction between 20-30 min postinjection and accumulate for 1 h and 4h, respectively. Subsequently, the propeptide disappears with a half-life of 1 h while the heterodimer is relatively stable. These results confirm our previous proposal for two distinct subcellular sites for transpeptidase propeptide cleavage (Capraro, M.A. and Hughey, R.P. (1983) FEBS Lett. 157, 139-143).  相似文献   

9.
gamma-Glutamyltranspeptidase is associated with the brush border membrane of kidney proximal straight tubule cells. It can be solubilized qualitatively by treatment with papain or Triton X-100. Neither procedure affects its catalytic activity but the two resulting forms of the enzyme differ considerably in their physical properties. The papain-solubilized transpeptidase is soluble in aqueous buffers and was purified 430-fold. It has an s20,w of 4.9 S, a Stokes radius of 36 A, and a calculated molecular weight of 69,000. It appears homogeneous by sedimentation equilibrium centrifugation (Mr=66,700). In contrast, the Triton-solubilized transpeptidase is soluble only in the presence of detergents and was purifed 300-fold. This form of the enzyme has a Stokes radius of 70 A but an s20,w of only 4.15 S. Aggregation of the enzyme just below the critical micelle concentration of Triton X-100 and its ability to bind 1.16 mg of Triton X-100-protein complex was calculated to be 169,000, but the glycoprotein portion of the complex is 52% of the total mass (87,000). The mass of Triton X-100 (82,000) is consistent with its reported micelle molecular weight. Treatment of the Triton-purified transpeptidase with papain or bromelain results in a form of the enzyme identical in all respects with the papain-purified enzyme. Both the Triton- and papain-purified transpeptidase exhibit two protein bands on sodium lauryl sulfate-polyacrylamide gel electrophoresis. The smaller subunits of the two forms appear identical (Mr=27,000), while the larger subunits of the Triton- and papain-purified enzyme have apparent molecular weights of 54,000 and 51,000, respectively. These data suggest that a peptide (3,000 to 19,000) in the larger subunit of gamma-glutamyltranspeptidase is responsible for its binding to Triton micelles and probably for holding the enzyme in the brush border membrane.  相似文献   

10.
The effect of cyclic nucleotides and cholera toxin on the phosphorylation of the brush border membrane proteins of the rat jejunum was studied. Phosphorylation was analyzed by autoradiography of brush border membrane proteins separated by SDS-polyacrylamide gel electrophoresis. Phosphorylation was performed either in vivo by perfusion of the jejunum with [32P]orthophosphate followed by an analysis of the isolated membranes or in vitro by phosphorylation of isolated brush border membranes by [γ-32P]ATP in the presence of saponin. The addition of cholera toxin (10 μg/ml) or dibutyryl-cAMP (5 mmol/l) to the perfusate was unable to produce significant changes in the phosphoprotein pattern. On the other hand, cAMP (at 5 μmol/l) induced an increase of the phosphorylation of a 86 kDa protein when freshly isolated brush border membranes were phosphorylated by [γ-32P]ATP. However, the same effect could also be induced by low concentrations of cGMP (0.1 μmol/l). It is concluded that brush border membranes from rat jejunum do not contain cAMP-dependent protein kinase activity and that cAMP-dependent protein phosphorylation of this membrane does probably not represent the final event of cholera toxin-induced secretion.  相似文献   

11.
Luminal brush border and contraluminal basal-lateral segments of the plasma membrane from the same kidney cortex were prepared. The brush border membrane preparation was enriched in trehalase and gamma-glutamyltranspeptidase, whereas the basal-lateral membrane preparation was enriched in (Na+ + K+1)-ATPase. However, the specific activity of (Na+ + K+)-ATPase in brush border membranes also increased relative to that in the crude plasma membrane fraction, suggesting that (Na+ + K+)-ATPase may be an intrinsic constituent of the renal brush border membrane in addition to being prevalent in the basal-lateral membrane. Adenylate cyclase had the same distribution pattern as (Na+ + K+)-ATPase, i.e. higher specific activity in basal-lateral membranes and present in brush border membranes. Adenylate cyclase in both membrane preparations was stimulated by parathyroid hormone, calcitonin, epinephrine, prostaglandins and 5'-guanylylimidodiphosphate. When the agonists were used in combination enhancements were additive. In contrast to the distribution of adenylate cyclase, guanylate cyclase was found in the cytosol and in basal-lateral membranes with a maximal specific activity (NaN3 plus Triton X-100) 10-fold that in brush border membranes. ATP enhanced guanylate cyclase activity only in basal-lateral membranes. It is proposed that guanylate cyclase, in addition to (Na+ + K+)-ATPase, be used as an enzyme "marker" for the renal basal-lateral membrane.  相似文献   

12.
The reaction of gamma-glutamyltranspeptidase with phenobarbital or with thiobarbituric acid resulted in a irreversible loss of its enzymatic activity. The inactivation followed pseudo-first-order kinetics. Half-maximal velocity of inactivation (Ki) at 37 degrees C in the presence of phenobarbital or thiobarbituric acid was calculated to be 43 mM and 20 mM, respectively. The inactivation of the enzyme activity by both these inhibitors was prevented by serine borate, a known competitive inhibitor, and by the substrate, reduced glutathione, suggesting an active-site-directed nature of the these inhibitors. Maleate provided slight protection against inactivation by thiobarbituric acid. Complete inactivation of the enzyme with tritium-labeled phenobarbital resulted in a stoichiometric incorporation of radioactivity into the enzyme protein. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis of tritium-labeled phenobarbital-enzyme complex, nearly all the radioactivity was found to be associated with the small subunit (Mr = 22 000) of the enzyme, indicating that the catalytic component of the enzyme is on the small subunits.  相似文献   

13.
Summary The aim of this study was to provide further evidence for the existence of a nonmitochondrial bicarbonate-stimulated Mg2+-ATPase in brush border membranes derived from rat kidney cortex. A plasma membrane fraction rich in brush border microvilli and a mitochondrial fraction were isolated by differential centrifugation. Both fractions contain a Mg2+-ATPase activity which can be stimulated by bicarbonate. The two Mg2+-ATPases are stimulated likewise by chloride, bicarbonate, and sulfite or inhibited by oligomycin and aurovertin, though to different degrees. In contrast to these similarities, only the Mg2+-ATPase activity of the mitochondrial fraction is inhibited by atractyloside, a substance which blocks an adenine nucleotide translocator in the inner mitochondrial membrane. On the other hand, filipin, an antibiotic that complexes with cholesterol in the membranes inhibits exclusively the Mg2+-ATPase of the cholesterol-rich brush border membranes. Furthermore it could be demonstrated by the use of bromotetramisole, an inhibitor of alkaline phosphatase activity, that the Mg2+-ATPase activity in the membrane fraction is not due to the presence of the highly active alkaline phosphatase in these membranes. These results support the assumption that an intrinsic bicarbonate-stimulated Mg2+-ATPase is present in rat kidney brush border membranes.  相似文献   

14.
Glutathione peroxidase activities from rat liver   总被引:1,自引:0,他引:1  
There are two enzymes in rat liver with glutathione peroxidase activity when cumene hydroperoxide is used as substrate. One is the selenium-requiring glutathione peroxidase (glutathione:hydrogen-peroxide oxidoreductase, EC 1.11.1.9) and the other appears to be independent of dietary selenium. Activities of the two enzymes vary greatly among tissues and among animals. The molecular weight of the enzyme with selenium-independent glutathione peroxidase activity was estimated by gel filtration to be 35 000, and the subunit molecular weight was estimated by dodecyl sulfate-polyacrylamide gel electrophoresis to be 17 000. Double reciprocal plots of enzyme activity as a function of substrate concentration produced intersecting lines which are suggestive of a sequential reaction mechanism. The Km for glutathione was 0.20 mM and the Km for cumene hydroperoxide was 0.57 mM. The enzyme was inhibited by N-ethylmaleimide, but not by iodoacetic acid. Inhibition by cyanide was competitive with respect to glutathione and the Ki for cyanide was 0.95 mM. This selenium-independent glutathione peroxidase also catalyzes the conjugation of glutathione to 1-chloro-2,4-dinitrobenzene. Along with other similarities to glutathione S-transferase, this suggests that the selenium-independent glutathione peroxidase and glutathione S-transferase activities in rat liver are of the same enzyme.  相似文献   

15.
We have recently identified a novel 190-kD calmodulin-binding protein (p190) associated with the actin-based cytoskeleton from mammalian brain (Larson, R. E., D. E. Pitta, and J. A. Ferro. 1988. Braz. J. Med. Biol. Res. 21:213-217; Larson, R. E., F. S. Espindola, and E. M. Espreafico. 1990. J. Neurochem. 54:1288-1294). These studies indicated that p190 is a phosphoprotein substrate for calmodulin-dependent kinase II and has calcium- and calmodulin-stimulated MgATPase activity. We now have biochemical and immunological evidence that this protein is a novel calmodulin-binding myosin whose properties include (a) Ca2+ dependent action activation of its Mg-ATPase activity, which seems to be mediated by Ca2+ binding directly to calmodulin(s) associated with p190 (maximal activation by actin requires the presence of Ca2+ and is further augmented by addition of exogenous calmodulin); (b) ATP-sensitive cross-linking of skeletal muscle F-actin, as demonstrated by the low-speed actin sedimentation assay; and (c) cross-reactivity with mAbs specific for epitopes in the head of brush border myosin I. We also show that p190 has properties distinct from conventional brain myosin II and brush border myosin I, including (a) separation of p190 from brain myosin II by gel filtration on a Sephacryl S-500 column; (b) lack by p190 of K(+)-stimulated EDTA ATPase activity characteristic of most myosins; (c) lack of immunological cross-reactivity of polyclonal antibodies which recognize p190 and brain myosin II, respectively; (d) lack of immunological recognition of p190 by mAbs against an epitope in the tail region of brush border myosin I; and (e) distinctive proteolytic susceptibility to calpain. A survey of rat tissues by immunoblotting indicated that p190 is expressed predominantly in the adult forebrain and cerebellum, and could be detected in embryos 11 d post coitus. Immunocytochemical studies showed p190 to be present in the perikarya and dendritic extensions of Purkinje cells of the cerebellum.  相似文献   

16.
The alkaline phosphatases present on isolated brush border and basal lateral membranes of rat duodenal epitheilum were examined by means of a variety of biochemical assays and physical methods. The two alkaline phosphatases have similar pH optima of 9.6–9.8, similar substrate km's for p-nitrophenyl phosphate (PNPP) of 71 micromolar, similar responses to the inhibitors 2-mercaptoethanol, theophylline, phenylalanine, and ethylenediaminetetraacetic acid (EDTA), similar sensitivities to calcium, magnesium, zinc, sodium, and potassium, and similar insensitivities to digestion with trypsin or papain. The two enzymes also exhibit similar molecular weights on SDS-polyacrylamide gels in the range 124,000–150,000, and both enzymes show an Rf value of 0.092 on Triton X-100 polyacrylamide gels, indicating similar intrinsic charges. The Vmax of the brush border enzyme is ten times greater than that of the basal lateral enzyme, 140 μmoles/mg-h as opposed to 14 μmoles/mg-h. The differences in Vmax are a reflection of the known distribution of alkaline phosphatase in rat duodenum, there being more alkaline phosphatase activity present on the brush border than on the basal lateral surface. One other major difference was observed between the two enzymes, the stimulation of the basal lateral and not the brush border alkaline phosphatase by SDS, Triton X-100, or cholate. We conclude that the enzymes are very similar to one another and probably perform similar membrane functions.  相似文献   

17.
Glutathione leaked from cells of Proteus mirabilis grown in medium containing an inhibitor of gamma-glutamyltranspeptidase. In medium containing 100 mM L-serine and borate, up to 300 microM glutathione accumulated. L-Serine in the medium was consumed during the logarithmic phase of growth, gamma-glutamyltranspeptidase activity was restored, and glutathione decreased in the medium. In the presence of 2 mM 6-diazo-5-oxo-L-norleucine, cells increased normally, gamma-glutamyltranspeptidase was inhibited completely, and the maximum concentration of glutathione which accumulated in the medium was 20 microM. The glutathione content of cells rose before leakage began. Glutathione leaked from intact cells of other bacteria, although to a lesser extent than was seen with P. mirabilis.  相似文献   

18.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

19.
Glutathione leaked from cells of Proteus mirabilis grown in medium containing an inhibitor of gamma-glutamyltranspeptidase. In medium containing 100 mM L-serine and borate, up to 300 microM glutathione accumulated. L-Serine in the medium was consumed during the logarithmic phase of growth, gamma-glutamyltranspeptidase activity was restored, and glutathione decreased in the medium. In the presence of 2 mM 6-diazo-5-oxo-L-norleucine, cells increased normally, gamma-glutamyltranspeptidase was inhibited completely, and the maximum concentration of glutathione which accumulated in the medium was 20 microM. The glutathione content of cells rose before leakage began. Glutathione leaked from intact cells of other bacteria, although to a lesser extent than was seen with P. mirabilis.  相似文献   

20.
Z Lojda 《Histochemistry》1979,64(2):205-221
A histochemical method for the demonstration of a brush border endopeptidase is described based on results of biochemical and histochemical experiments. The substrate of choice is Glut-Ala-Ala-Ala-MNA which displays a very good localization ability and suitable kinetic properties. Km estimated in rat kidney homogenate amounts to 2.35 X 10(-4) M. pH optimum of this endopeptidase associated with the brush border membrane is in the alkaline range. The activity is dependent on the buffer used. In phosphate and cacodylate buffers of pH 7.2 about 30% lower activity in rat kidney and about 25% lower activity in rat small intestine than in Tris-HCl buffer of the same pH was found. The most suitable diazonium salt for the detection "in situ" is Fast Blue B. It inhibits the endopeptidase activity of rat kidney by about 85% at pH 7.2 AND BY ABOUT 55% AT PH 6.0. The best results are obtained in cryostat sections adherent to semipermeable membranes treated with chloroform-acetone before the incubation. A microdensitometric evaluation of the reaction product is possible and results are in good agreement with those of the biochemical determination. When Suc-Ala-Ala-Ala-INA is used as substrate hexazonium-p-rosaniline is the most suitable coupling agent although it inhibits more than Fast Blue B. The reaction using acylated trialanyl naphthylamides as substrates runs in two steps. Endopeptidase sets free Ala-NA which is attacked by aminopeptidase M. Aminopeptidase M is not reaction rate or localization limiting factor because its activity in the brush border is very high and the enzyme is anchored to the cell membrane very closely to endopeptidase. In homogenates of rat kidney and jejunal mucosa the endopeptidase activity was inhibted by EDTA (2X10(-3) M) by 75% in the kidney and by 68% in the jejunum, by DFP (10(-3) M) by 41% in the kidney and by 35% in the intestine, by Mn2+ (5X10(-3) M) by 25% in the kidney and by 30% in the intestine. No inhibition was exerted by E 600. In sections the results were similar. 1,10-phenanthroline (10(-2) M) caused a substantial inhibition. Endopeptidase activity was detected in the brush border of cells of proximal convuluted tubules of the kidney and in the brush border of differentiated enterocytes of the small intestine. In the same species enterocytes display a lower activity than kidney tubular cells. There are species differences in the distribution pattern of endopeptidase in the kidney. In the rabbit and man the positive reaction occurs in the whole cortex. It is distributed unevenly, however. In the rat the tubules of the inner cortex display a very high activity. In the outer cortex straight portions react strongly. In the rabbit kidney cells of the parietal layer of Bowman's capsule display a weak reaction as well. No sex differences were found in the distribution pattern of endopeptidase in the rat kidney. In the intestine of all species examined a proximo-distal gradient was found...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号