首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Although the detection of viable probiotic bacteria following their ingestion and passage through the gastrointestinal tract (GIT) has been well documented, their mucosal attachment in vivo is more difficult to assess. In this study, we investigated the survival and mucosal attachment of multi-strain probiotics transiting the rat GIT. Rats were administered a commercial mixture of the intestinal probiotics Lactobacillus acidophilus LA742, Lactobacillus rhamnosus L2H and Bifidobacterium lactis HN019 and the oral probiotic Streptococcus salivarius K12 every 12 h for 3 days. Intestinal contents, mucus and faeces were tested 6 h, 3 days and 7 days after the last dose by strain-specific enumeration on selective media and by denaturing gradient gel electrophoresis. At 6 h, viable cells and DNA corresponding to all four probiotics were detected in the faeces and in both the lumen contents and mucus layers of the ileum and colon. Viable probiotic cells of B. lactis and L. rhamnosus were detected for 7 days and L. acidophilus for 3 days after the last dose. B. lactis and L. rhamnosus persisted in the ileal mucus and colon contents, whereas the retention of L. acidophilus appeared to be relatively higher in colonic mucus. No viable cells of S. salivarius K12 were detected in any of the samples at either day 3 or 7. The study demonstrates that probiotic strains of intestinal origin but not of oral origin exhibit temporary colonisation of the rat GIT and that these strains may have differing relative affinities for colonic and ileal mucosa.  相似文献   

2.
The present study aimed to investigate the potential probiotic properties of six lactic acid bacteria (LAB) intended for human use, Lactobacillus rhamnosus ATCC 53103, Lactobacillus casei Shirota, Lactobacillus bulgaricus, L. rhamnosus LC 705, Bifidobacterium lactis Bb12, and Lactobacillus johnsonii La1, and one for animal use, Enterococcus faecium Tehobak, for use as a fish probiotic. The strains for human use were specifically chosen since they are known to be safe for human use, which is of major importance because the fish are meant for human consumption. The selection was carried out by five different methods: mucosal adhesion, mucosal penetration, inhibition of pathogen growth and adhesion, and resistance to fish bile. The adhesion abilities of the seven LAB and three fish pathogens, Vibrio anguillarum, Aeromonas salmonicida, and Flavobacterium psychrophilum, were determined to mucus from five different sites on the surface or in the gut of rainbow trout. Five of the tested LAB strains showed considerable adhesion to different fish mucus types (14 to 26% of the added bacteria). Despite their adhesive character, the LAB strains were not able to inhibit the mucus binding of A. salmonicida. Coculture experiments showed significant inhibition of growth of A. salmonicida, which was mediated by competition for nutrients rather than secretion of inhibitory substances by the probiotic bacteria as measured in spent culture liquid. All LAB except L. casei Shirota showed tolerance against fish bile. L. rhamnosus ATCC 53103 and L. bulgaricus were found to penetrate fish mucus better than other probiotic bacteria. Based on bile resistance, mucus adhesion, mucus penetration, and suppression of fish pathogen growth, L. rhamnosus ATCC 53103 and L. bulgaricus can be considered for future in vivo challenge studies in fish as a novel and safe treatment in aquaculture.  相似文献   

3.
The aims of this study were to examine long-term growth interactions of five probiotic strains (Lactobacillus casei 01, Lactobacillus plantarum HA8, Lactobacillus rhamnosus GG, Lactobacillus reuteri ATCC 55730 and Bifidobacterium lactis Bb12) either alone or in combination with Propionibacterium jensenii 702 in a co-culture system and to determine their adhesion ability to human colon adenocarcinoma cell line Caco-2. Growth patterns of probiotic Lactobacillus strains were not considerably affected by the presence of P. jensenii 702, whereas lactobacilli exerted a strong antagonistic action against P. jensenii 702. In the co-culture of Bif. lactis Bb12 and P. jensenii 702, a significant synergistic influence on growth of both bacteria was observed (P < 0.05). The results of adhesion assay showed that when probiotic strains were tested in combination, there was evidence of an associated effect on percentage adherence. However, in most cases these differences were not statistically significant (P < 0.05). Adhesion percentage of Lb. casei 01 and Lb. rhamnosus GG both decreased significantly in the presence of P. jensenii 702 compared to their adhesion levels when alone (P < 0.05). These results show that the survival and percentage adhesion of some probiotic strains may be influenced by the presence of other strains and this should be considered when formulating in the probiotic products.  相似文献   

4.
Human intestinal glycoproteins extracted from faeces were used as a model for intestinal mucus to investigate adhesion of pathogenic Escherichia coli and Salmonella strains, and the effect of probiotics on this adhesion. S-fimbriated E. coli expressed relatively high adhesion in the mucus model, but the other tested pathogens adhered less effectively. Probiotic strains Lactobacillus GG and L. rhamnosus LC-705 as well as a L. rhamnosus isolated from human faeces were able to slightly reduce S-fimbria-mediated adhesion. Adhesion of S. typhimurium was significantly inhibited by probiotic L. johnsonii LJ1 and L. casei Shirota. Lactobacillus GG and L. rhamnosus (human isolate) increased the adhesion of S. typhimurium suggesting that the pathogen interacts with the probiotic.  相似文献   

5.
Bacterial lectins are carbohydrate-binding adhesins that recognize glycoreceptors in the gut mucus and epithelium of hosts. In this study, the contribution of lectin-like activities to adhesion of Lactobacillus mucosae LM1 and Lactobacillus johnsonii PF01, which were isolated from swine intestine, were compared to those of the commercial probiotic Lactobacillus rhamnosus GG. Both LM1 and PF01 strains have been reported to have good adhesion ability to crude intestinal mucus of pigs. To confirm this, we quantified their adhesion to porcine gastric mucin and intestinal porcine enterocytes isolated from the jejunum of piglets (IPEC-J2). In addition, we examined their carbohydrate-binding specificities by suspending bacterial cells in carbohydrate solutions prior to adhesion assays. We found that the selected carbohydrates affected the adherences of LM1 to IPEC-J2 cells and of LGG to mucin. In addition, compared to adhesion to IPEC-J2 cells, adhesion to mucin by both LM1 and LGG was characterized by enhanced specific recognition of glycoreceptor components such as galactose, mannose, and N-acetylglucosamine. Hydrophobic interactions might make a greater contribution to adhesion of PF01. A similar adhesin profile between a probiotic and a pathogen, suggest a correlation between shared pathogen–probiotic glycoreceptor recognition and the ability to exclude enteropathogens such as Escherichia coli K88 and Salmonella Typhimurium KCCM 40253. These findings extend our understanding of the mechanisms of the intestinal adhesion and pathogen-inhibition abilities of probiotic Lactobacillus strains.  相似文献   

6.
The effects of co-colonization with Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) on 3-dose vaccination with attenuated HRV and challenge with virulent human rotavirus (VirHRV) were assessed in 4 groups of gnotobiotic (Gn) pigs: Pro+Vac (probiotic-colonized/vaccinated), Vac (vaccinated), Pro (probiotic-colonized, non-vaccinated) and Control (non-colonized, non-vaccinated). Subsets of pigs were euthanized pre- [post-challenge day (PCD) 0] and post (PCD7)-VirHRV challenge to assess diarrhea, fecal HRV shedding and dendritic cell/innate immune responses. Post-challenge, Pro+Vac and Vac groups were completely protected from diarrhea; protection rates against HRV shedding were 100% and 83%, respectively. Diarrhea and HRV shedding were reduced in Pro compared to Control pigs following VirHRV challenge. Diarrhea scores and virus shedding were significantly higher in Controls, compared to all other groups, coincident with significantly higher serum interferon-alpha levels post-challenge. LGG+Bb12 colonization ±vaccine promoted immunomaturation as reflected by increased frequencies of CD4, SWC3a, CD11R1, MHCII expressing mononuclear cells (MNCs) and conventional dendritic cells in intestinal tissues and blood post-challenge. Colonization decreased frequencies of toll-like receptors (TLR) 2 and TLR4 expressing MNCs from vaccinated pigs (Pro+Vac) pre-challenge and increased frequencies of TLR3 expressing MNCs from Pro pigs post-challenge, suggesting that probiotics likely exert anti-inflammatory (TLR2 and 4 down-regulation) and antiviral (TLR3 up-regulation by HRV dsRNA) actions via TLR signaling. Probiotic colonization alone (Pro) increased frequencies of intestinal and systemic apoptotic MNCs pre-challenge, thereby regulating immune hyperreactivity and tolerance. However, these frequencies were decreased in intestinal and systemic tissues post-challenge, moderating HRV-induced apoptosis. Additionally, post-challenge, Pro+Vac and Pro groups had significantly decreased MNC proliferation, suggesting that probiotics control excessive lymphoproliferative reactions upon VirHRV challenge. We conclude that in the neonatal Gn pig disease model, selected probiotics contribute to immunomaturation, regulate immune homeostasis and modulate vaccine and virulent HRV effects, thereby moderating HRV diarrhea.  相似文献   

7.
Twenty-four acid- and bile-tolerant lactobacilli isolates from dairy products were identified and further in vitro characterized for the presence of functional traits potentially useful for probiotic applications, which included desirable and undesirable traits, such as biofilm formation, ability to inhibit intestinal pathogens, antibiotic susceptibility, and enzyme activity. The majority of examined strains were susceptible to certain antimicrobial agents (streptomycin, gentamicin, clindamycin, erythromycin, tetracycline, quinupristin–dalfopristin), except for three strains of Lactobacillus rhamnosus with minimal inhibitory concentration levels for streptomycin higher than the microbiological breakpoints (≥32 μg/mL), which are considered as resistant. Undesirable traits such as α-chymotrypsin or N-acetyl-β-glucosaminidase activities were not detected, but low β-glucuronidase, and moderate and high β-glucosidase activities were recorded in nine strains, which were eliminated from further examination together with three isolates showing unsuitable antibiotic resistance. Of the remaining 12 isolates, 4 (Lactobacillus fermentum 202, Lactobacillus gallinarum 7001, L. rhamnosus 183, and Lactobacillus plantarum L2-1) manifested an outstanding potential to inhibit selected intestinal pathogens in an agar spot test, including Escherichia coli and Salmonella spp., and simultaneously demonstrated strong biofilm-forming capacity. In conclusion, the results of our in vitro experiments showed that the above four strains had a potential probiotic value and met the criteria to be identified as a possible probiotic microorganism, with the necessity of verification through well-designed in vivo experimental, clinical, and technological studies before the strains can be used as probiotics or as starter probiotic cultures.  相似文献   

8.
AIMS: The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. METHODS AND RESULTS: The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. CONCLUSIONS: Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. SIGNIFICANCE AND IMPACT OF THE STUDY: The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.  相似文献   

9.
Probiotic Lactobacillus strains are widely used to benefit human and animal health, although the exact mechanisms behind their interactions with the host and the microbiota are largely unknown. Fluorescent tagging of live probiotic cells is an important tool to unravel their modes of action. In this study, the implementation of different heterologously expressed fluorescent proteins for the labelling of the model probiotic strains Lactobacillus rhamnosusGG (gastrointestinal) and Lactobacillus rhamnosusGR‐1 (vaginal) was explored. Heterologous expression of mTagBFP2 and mCherry resulted in long‐lasting fluorescence of L. rhamnosusGG and GR‐1 cells, using the nisin‐controlled expression (NICE) system. These novel fluorescent strains were then used to study in vitro aspects of their microbe–microbe and microbe–host interactions. Lactobacillus rhamnosusGG and L. rhamnosusGR‐1 expressing mTagBFP2 and mCherry could be visualized in mixed‐species biofilms, where they inhibited biofilm formation by Salmonella Typhimurium–gfpmut3 expressing the green fluorescent protein. Likewise, fluorescent L. rhamnosusGG and L. rhamnosusGR‐1 were implemented for the visualization of their adhesion patterns to intestinal epithelial cell cultures. The fluorescent L. rhamnosus strains developed in this study can therefore serve as novel tools for the study of probiotic interactions with their environment.  相似文献   

10.
Enterobacter sakazakii is an opportunistic pathogen and an occasional contaminant in powdered infant formula. Interaction between specific probiotics and E. sakazakii may reduce the risk of infection. The aim of this study was to characterize in vitro the ability of probiotics (alone and in combinations) to inhibit, compete with and displace the adhesion of E. sakazakii to immobilized human mucus and to assess their capacity to aggregate with pathogen. Specific probiotic strains have proved to aggregate E. sakazakii cells and, through competitive exclusion, inhibition and displacement of the adhered pathogen, were able to inhibit E. sakazakii action on intestinal mucus. The ability to inhibit and to displace adhered pathogen depended on both the probiotic and the pathogen, suggesting that several complementary mechanisms are involved in the processes. We suggest that the selection of specific probiotic strains and their combinations may be a useful means of counteracting E. sakazakii contamination in infant formula and thus to reduce the risk of emerging infection. This approach may also allow the development of new probiotic combinations to counteract the risks associated with other pathogens by improving the intestinal barrier against pathogens.  相似文献   

11.
The aim of this study was to assess the effect of a commercial green tea extract (TEAVIGO™) on the microbial growth of three probiotic strains (Lactobacillus and Bifidobacterium), as well as three pathogenic bacteria. MIC and co-culture studies were performed. The MICs of the green tea extract against Staphylococcus aureus and Streptococcus pyogenes (100 μg ml−1) were considerably lower than those against the probiotic strains tested (>800 μg ml−1) and Escherichia coli (800 μg ml−1). In co-culture studies, a synergistic effect of the probiotic strains and the green tea extract was observed against both Staph. aureus and Strep. pyogenes. Green tea extract in combination with probiotics significantly reduced the viable count of both pathogens at 4 h and by 24 h had completely abolished the recovery of viable Staph. aureus and Strep. pyogenes. These reductions were more significant than the reductions induced by probiotics or green tea extracts used separately. These results demonstrate the potential for combined therapy using the green tea extract plus probiotics on microbial infections caused by Staph. aureus and Strep. pyogenes. As probiotics and the green tea extract are derived from natural products, treatment with these agents may represent important adjuncts to, or alternatives to, conventional antibiotic therapy.  相似文献   

12.
Adhesion to intestinal epithelium is an outcome property for the selection of probiotic lactic acid bacteria strains. We have analyzed the adhesion properties of a collection of Lactobacillus casei strains from different origins, ranging from cheese isolates to commercial probiotics. Analysis of the surface characteristics of the strains by measuring adhesion to solvents (MATS test) showed that most of the strains have a basic and hydrophobic surface. The strains were able to bind ex vivo to human colon fragments at different levels and, in most cases, this adhesion correlated with the ability to in vitro binding of mucin. Attachment to this later substrate was not enhanced by growing the cells in the presence of mucin and was independent of proteinaceous factors. On the contrary, adhesion to other extracellular matrix components, such as collagen, fibronectin, or fibrinogen was partially or totally dependent on the presence of surface proteins. These results show that most of L. casei strains have in their surfaces factors that promote binding to intestinal epithelium, however, no clear correlation appears to exist between the origin of the strains and their adhesion capacities.  相似文献   

13.
The probiotic potential of 47 selected strains of Lactobacillus spp. was investigated. The strains were examined for resistance to pH 2.5 and 0.3% oxgall, adhesion to Caco-2 cells, and antimicrobial activities against enteric pathogenic bacteria in model systems. From the results obtained in vitro, five strains, Lactobacillus rhamnosus 19070-2, L. reuteri DSM 12246, L. rhamnosus LGG, L. delbrueckii subsp. lactis CHCC 2329, and L. casei subsp. alactus CHCC 3137, were selected for in vivo studies. The daily consumption by 12 healthy volunteers of two doses of 1010 freeze-dried bacteria of the selected strains for 18 days was followed by a washout period of 17 days. Fecal samples were taken at days 0 and 18 and during the washout period at days 5 and 11. Lactobacillus isolates were initially identified by API 50CHL and internal transcribed spacer PCR, and their identities were confirmed by restriction enzyme analysis in combination with pulsed-field gel electrophoresis. Among the tested strains, L. rhamnosus 19070-2, L. reuteri DSM 12246, and L. rhamnosus LGG were identified most frequently in fecal samples; they were found in 10, 8, and 7 of the 12 samples tested during the intervention period, respectively, whereas reisolations were less frequent in the washout period. The bacteria were reisolated in concentrations from 105 to 108 cells/g of feces. Survival and reisolation of the bacteria in vivo appeared to be linked to pH tolerance, adhesion, and antimicrobial properties in vitro.  相似文献   

14.
The intestinal mucus layer provides a potential niche for colonization by vancomycin-resistant Enterococcus faecium (VREF). We therefore examined the ability of six VREF strains to adhere to human intestinal mucus and determined binding kinetics. Four of six (67%) VREF strains demonstrated significant adhesion to immobilized intestinal mucus compared with a Salmonella typhimurium–negative control strain, but the level of adherence was low compared with Lactobacillus rhamnosus GG. Binding kinetics studies demonstrated that the maximum number of these four VREF strains that could adhere to a unit surface area of immobilized mucus was similar to or higher than the maximum number of L. rhamnosus GG that could adhere; however, L. rhamnosus GG demonstrated 20- to 130-times higher affinity than the VREF strains. These results demonstrate that VREF strains may adhere to human intestinal mucus and suggest that L. rhamnosus GG might be able to displace VREF strains.  相似文献   

15.
Lactic acid bacteria have long been used to improve the safety of foods through fermentation. Some fermented products were also early used for their perceived health benefits, which lead to the development of probiotics as we now know them. Probiotics mainly belong to the genera Lactobacillus and Bifidobacterium. Most members of these genera are not considered pathogens or even opportunistic pathogens. Nevertheless, rare cases of Lactobacillus and Bifidobacterium infection have been reported, possibly even associated with the consumption of probiotic products. Such cases are extremely rare and the subjects always had severe underlying conditions most often affecting the immune system. There does not seem to be any risk for the general population. Safety assessments can be performed and many possible tests exist. It is, however, not certain these tests will prevent rare case of Lactobacillus infection in certain high-risk patients. The benefits of probiotic use should be weighed against the possible small risk. Such an evaluation will, in most cases, be favourable and should therefore not discourage consumption of probiotics. Presented at the Second Probiotic Conference, Košice, 15–19 September 2004, Slovakia.  相似文献   

16.
Occurrence of widespread epizootics among larval and cultured shrimp has put on viable preventive approaches such as application of probiotics on a high priority in aquaculture. In the present study, four probiotics bacteria were isolated from marine fish and shrimp intestine based on the antagonistic activity and nonpathogenic to the host. The isolates of probiotics strains Streptococcus phocae PI80, Enterococcus faecium MC13, Lactococcus garvieae LC149, B49 and one commercial probiotics (ECOFORCE) were fed to post larvae of Penaeus monodon obtained from two different hatcheries to analyze the growth and protection against Vibrio harveyi and V. parahaemolyticus. Growth of P. monodon post larvae fed with probiotic strain S. phocae PI80 was significantly (P < 0.001) higher when compared with control and other three strains in both experiments. The treatment of post larvae with B49 reduced the growth as well as Specific growth rate. Among the three probiotic strains S. phocae PI80 and E. faecium MC13 have effectively inhibited the pathogens. In experiment I high survival (92%) were observed in S. phocae PI80 treated post larvae when challenged with Vibrio harveyi followed by E. faecium MC13 (84%), B49 (76%) and ECOFORCE (68%) but PI80 did not protect the post larvae in the same experiment when they were exposed to V. parahaemolyticus. The probiotic isolate of MC13 has protected the post larvae against V. parahaemolyticus when compared to other probiotics and control. Similarly in the second experiment feeding of S. phocae enhanced the survival of larvae when challenged with V. harveyi. The laboratory studies proved that bacterial probionts S. phocae and E. faecium isolated from shrimp and brackishwater fish has potential applications for controlling pathogenic vibriosis in shrimp culture.  相似文献   

17.
Aims: This study aims to investigate the effect of different kinds of food products enriched with a combination of two potential probiotic strains, Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502®, on bowel habits of healthy adults. Methods and Results: Fifty healthy volunteers took part in a double‐blind placebo probiotic feeding study (25 fed probiotics, 25 fed placebo) for 12 weeks. Each volunteer ingested daily one or more food products enriched with a combination of the two potential probiotic strains (probiotic group) or the same food products without the probiotics (control group). Faecal samples were collected before, at the end and 2 weeks later the intervention period, and some of the main groups of faecal bacteria were enumerated by plate count and real‐time PCR. Questionnaires on bowel habits were submitted to volunteers. After the intervention, a significant increase in faecal lactobacilli and bifidobacteria were observed in the probiotic group, and stool frequency and stool volume were higher in the probiotic group than in the placebo group. Conclusions: Daily consumption of food products enriched with the two potential probiotic strains, Lact. rhamnosus IMC 501® and Lact. paracasei IMC 502®, contributes to improve intestinal microbiota with beneficial properties and enhances bowel habits of healthy adults. Significance and Impact of the Study: The study revealed that Lact. rhamnosus IMC 501® and Lact. paracasei IMC 502® exert a positive effect, in terms of improved bowel habits, on healthy adults.  相似文献   

18.
The ability to adhere to mucosal surfaces is related to many probiotic health effects. In the presence of Lactobacillus GG or Lact. bulgaricus, the adhesion of Bifidobacterium lactis Bb12 to a mucus model was more than doubled. Other tested lactobacilli did not affect the adhesion, nor was the adhesion of the lactobacilli influenced by the bifidobacteria. Co-aggregation between Bif. lactis Bb12 and the tested lactobacilli was insignificant and does not explain the observed effect. The results suggest that combinations of probiotics strains may have synergistic adhesion effects. Such specific strain combinations should also be assessed in clinical studies.  相似文献   

19.
During the last decade, probiotic research has progressed considerably and significant advances have been made in the selection and characterization of specific probiotic strains. The most studied probiotics belong to the genus Lactobacillus. In this study, 80 Lactobacillus spp. isolated from healthy women tolerated low pH and were able to grow in the presence of bile salts. RAPD PCR technique resulted in the identification of 38 different types. These isolates were then evaluated based on adhesion capacity, antibiotic susceptibility and tolerance in simulated gastrointestinal tract. Species-specific PCR and detection of bacteriocin-related genes were also surveyed. Among the isolates, five strains—Lacticaseibacillus rhamnosus NO21, Lacticaseibacillus casei NO1, Lactiplantibacillus plantarum NO4, Lactobacillus acidophilus NO7 and Lactobacillus gasseri NO38presented acceptable antibiotic susceptibility pattern. Further analysis showed antimicrobial activity of Lacticaseibacillus culture against various bacterial pathogens and real-time PCR showed all five strains were able to prevent the colonization of bacterial pathogens. All five selected strains produced organic acids, hydrogen peroxide and were resistant to the spermicide. In addition, they lacked haemolytic activity with the ability of hydrophobicity, auto-aggregation and co-aggregation with pathogens. These results suggest that the vaginal microbiome could be a good source for the isolation of probiotics and the strains of this study may be considered as good probiotic candidates.  相似文献   

20.

Aims

The manufacturing processes have been reported to influence the properties of probiotics with potential impact on health properties. The aim was to investigate the effect of different growth media and inactivation methods on the properties of canine‐originated probiotic bacteria alone and in combination mixture.

Methods and Results

Three established dog probiotics, Lactobacillus fermentum VET9A, Lactobacillus plantarum VET14A and Lactobacillus rhamnosus VET16A, and their combination mixture were evaluated for their adhesion to dog mucus. The effect of different growth media, one reflecting laboratory and the other manufacturing conditions, and inactivation methods (95°C, 80°C and UV irradiation) on the mucus adhesion of the probiotic strains was characterized. Evaluation of dog probiotics was supported by cell visualization using transmission electron microscopy (TEM). Higher adhesion percentage was reported for probiotic strains growing in laboratory rather than in manufacturing conditions (P < 0·05). Inactivation by heat (95°C, 80°C) decreased the adhesion properties when strains were cultivated in soy‐based growth media compared with those grown in MRS broth (P < 0·05). TEM observations uncovered differences in cell‐surface components in nonviable forms of probiotic strains as compared with their viable forms.

Conclusions

Manufacturing process conditions such as growth media and pretreatment methods may significantly affect the adhesive ability of the tested strains.

Significance and Impact of the Study

Growth conditions, growth media, pretreatment methods and different probiotic combinations should be carefully considered for quality control of existing probiotics and for identification of new probiotics for dogs. These may also have an impact on health benefits for the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号