首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the role of platelet-activating factor (PAF) as a stimulator of leukotriene production by human monocytes. The production of leukotrienes was time- and concentration-dependent. Release of leukotrienes was half-maximal after 2 min and reached a maximum after 10 min. At a concentration of 10(-8) M, PAF induced the production of 0.14 +/- 0.01 ng LTB4/10(6) cells (mean +/- S.E., n = 8). At concentrations of 10(-6) M, PAF induced the production of 1.0 +/- 0.04 ng LTB4 and 0.22 +/- 0.03 ng peptidoleukotrienes (mean +/- S.E., n = 16). There was no metabolism of LTB4 as judged from stability of [3H]LTB4 added to the incubations. LTC4 was slowly metabolized by human monocytes to LTD4 and LTE4. The two specific PAF-receptor antagonists BN 52021 and WEB 2086 in concentrations of 10(-4) and 10(-6) M, respectively, inhibited the PAF (10(-6) M) stimulated LTB4 production completely. In this study, we demonstrate that nanomolar concentrations of PAF can stimulate the production of LTB4 and peptidoleukotrienes in human monocytes by a receptor-mediated mechanism.  相似文献   

2.
The initial response of the host to noxious stimuli produces a nonspecific inflammatory response. A more specific immune response is believed to be modulated by two classes of molecules: lipid mediators (PG, LT and PAF) and cytokines, synthesized by phagocytes and parenchyreal cells. In this review we discuss the increasing evidence of the interrelationship between eicosanoids, PAF and cytokines: IL-1 and TNF induce PG synthesis in various cells and PG, in turn, modulate cytokine production. We focused on the regulatory effects of LTB(4), PGE(2) and PAF on cytokine gene expression.  相似文献   

3.
Monoclonal anti-idiotypic antibodies (3C3F3E4 and 10D3F8H7) that interact with platelet activating factor (PAF) receptors were generated using an auto-anti-idiotypic approach by immunizing mice with an aldehydic analog of PAF coupled to bovine thyroglobulin. The resulting hybridomas were screened for anti-idiotypic antibody (anti-anti-PAF) with F(ab')2 fragments of affinity-purified polyclonal rabbit anti-PAF antibody. These antibodies displayed internal image properties of PAF and were considered as Ab2 beta according to the following criteria: (a) they bound to F(ab')2 fragments of the affinity-purified rabbit polyclonal anti-PAF antibody that had high affinity for PAF; (b) they inhibited [3H]PAF binding to rabbit polyclonal anti-PAF antibody and its F(ab')2 fragment in a concentration-dependent manner; (c) they displaced [3H]PAF from the anti-PAF antibody/[3H]PAF complex specifically; (d) they inhibited [3H]PAF binding to PAF receptors on rabbit platelet membranes dose dependently; (e) they displaced [3H]PAF from the [3H]PAF/PAF receptor complex specifically; and (f) they stimulated rabbit platelets to aggregate, and this aggregation could be inhibited or totally blocked by specific PAF receptor antagonists WEB 2086 and SRI 63-441. All of the above are consistent with the first successful production of monoclonal antibodies that mimic PAF and interact specifically with the PAF binding domain of PAF receptors on rabbit platelet membranes.  相似文献   

4.
Leukotrienes augment interleukin 1 production by human monocytes   总被引:18,自引:0,他引:18  
The effects of leukotrienes (LT) on production of interleukin 1 (IL 1) by human peripheral blood monocytes were examined. LTB4 enhanced IL 1 production by lipopolysaccharide (LPS)-stimulated monocytes twofold to threefold, and the most efficient concentrations of LTB4 were 10(-8) to 10(-7) M. LTD4 also enhanced IL 1 production, but to a lesser extent than LTB4. Adherence-purified, but otherwise unstimulated, human monocytes could also be induced to produce IL 1 in response to LTB4. Similarly, IL 1 production by monocytes stimulated with the known IL 1 inducers muramyl dipeptide, silica, or zymosan was also enhanced by LTB4. Inhibition of cyclooxygenase with use of indomethacin during IL 1 production by LPS-treated monocytes enhanced thymocyte response to IL 1, but LTB4 further enhanced IL 1 production when added to indomethacin-treated monocyte cultures. Neither LTB4 nor indomethacin had any direct effect on thymocyte proliferation. Optimal enhancement of IL 1 production occurred when LPS and LTB4 were present together at the initiation of the 24-hr monocyte culture. Significant enhancement was also observed, however, when monocyte cultures were either preincubated with LTB4 before addition of LPS or cultured with LPS alone for 3 hr before addition of LTB4. These results indicate that leukotrienes can modulate IL 1 production by human monocytes and suggest that they may play a role in IL 1-mediated functions of monocytes in inflammatory and immune reactions.  相似文献   

5.
Granulocyte-macrophage CSF (GM-CSF) primes human neutrophils for increased functional responsiveness to a variety of inflammatory agonists. In the present report, we have investigated the effect of human GM-CSF on the ability of platelet-activating factor (PAF) to induce the synthesis of 5-lipoxygenase products in human neutrophils. Human neutrophils stimulated with PAF in the range of 10(-5) to 10(-7) M for 15 min released small quantities of leukotriene B4 and its omega-oxidation products, 20-OH- and 20-COOH-leukotriene B4 in amounts that were detectable by enzyme immunoassay. Preincubation of normal peripheral blood neutrophils with human rGM-CSF enhanced the synthesis of the 5-lipoxygenase products in a time- and dose-dependent manner. Treatment with GM-CSF enabled their detection in response to lower concentrations of PAF (greater than or equal to 10(-9) M). The PAF receptor antagonist BN52021 inhibited the synthesis of 5-lipoxygenase products by GM-CSF-treated neutrophils in response to PAF. In addition to its effect on PAF-induced leukotriene synthesis, GM-CSF also augmented intracellular calcium mobilization by PAF. This observation prompted us to examine the effect of GM-CSF on two calcium-dependent events that are essential for leukotriene synthesis, arachidonic acid liberation, and 5-lipoxygenase activation. GM-CSF by itself, did not directly activate either of these two processes, however, it consistently and markedly enhanced the ability of PAF to do so. These results indicate that preincubation of peripheral blood neutrophils with GM-CSF enhances the ability of PAF to stimulate leukotriene synthesis by increasing both arachidonic acid availability and 5-lipoxygenase activation in response to PAF. These observations provide additional evidence of an important role for GM-CSF in the modulation of inflammatory responses to endogenous agonists through enhancement of the production of potent cellular inflammatory mediators such as leukotrienes.  相似文献   

6.
Platelet-activating factor (PAF) and leukotrienes (LTs) are potent pulmonary hypertensive and inflammatory mediators produced by the lung. Previously we showed that a rapid injection of PAF into the pulmonary artery of an isolated rat lung produced an extended elevation in mean pulmonary arterial pressure (PAP). The objective of the present study was to determine whether the extended pressor response induced by PAF was caused by prolonged activation of the 5-lipoxygenase pathway or slow clearance of LTs from the lung parenchyma. Rat lungs were perfused with a nonrecirculating physiological salt solution that contained indomethacin and albumin. Five minutes after a rapid injection of PAF into the pulmonary artery catheter, the following elevations (mean % above baseline) were observed: PAP (83%), LTB4 (3,260%), LTC4 (1,490%), LTD4 (970%), and LTE4 (1,500%). At 20 min these levels declined but were still significantly elevated above baseline. The 5-lipoxygenase inhibitor diethylcarbamazine (DEC), administered before the PAF injection, inhibited the elevations of PAP and all LTs. DEC administration that began 5 min after PAF reduced PAP and only LTC4 levels at 20 min in comparison to lungs with no DEC. The 5-lipoxygenase-activating protein inhibitor MK886, administered orally 2-6 h before perfusion, also inhibited the pressor response to PAF as well as LT production, as did DEC. We conclude that 1) the extended pulmonary hypertension induced by PAF was caused mainly by prolonged activation of 5-lipoxygenase with LTC4 production, 2) the relative overall lung clearance of LTB4, LTD4, and LTE4 was slower than that of LTC4, and 3) LTB4, LTD4, and LTE4 had no appreciable pressor effect.  相似文献   

7.
Platelet-activating factor (PAF) is a potent lipid mediator of inflammation that can act on human neutrophils. When neutrophils are stimulated with PAF at concentrations greater than 10 nM, a double peak of intracellular calcium mobilization is observed. The second calcium peak observed in PAF-treated neutrophils has already been suggested to come from the production of endogenous leukotriene B4 (LTB4). Here we demonstrate the involvement of endogenous LTB4 production and subsequent activation of the high affinity LTB4 receptor (BLT1) in this second calcium mobilization peak observed after stimulation with PAF. We also show that the second, but not the first peak, could be desensitized by prior exposure to LTB4. Moreover, when neutrophils were pre-treated with pharmacological inhibitors of LTB4 production or with the specific BLT1 antagonist, U75302, PAF-mediated neutrophil degranulation was inhibited by more than 50%. On the other hand, pre-treating neutrophils with the PAF receptor specific antagonist (WEB2086) did not prevent any LTB4-induced degranulation. Also, when human neutrophils were pre-treated with U75302, PAF-mediated chemotaxis was reduced by more than 60%. These data indicate the involvement of BLT1 signaling in PAF-mediated neutrophil activities.  相似文献   

8.
The effects of platelet activating factor (PAF) on glucose oxidation in uterine strips isolated from rats in the 4 th and 5 th day of pregnancy, were explored. PAF, at a concentration of 10(-10) and 10(-8) M, augmented significantly the generation of 14CO2 from labelled glucose in uteri from pregnant rats in the 4 th day of pregnancy. When the tissue was obtained from 5 days pregnant rats, the addition of PAF at 10(-8) increased significantly more than PAF at 10(-10) M the metabolism of glucose. On the other hand, PAF at 10(-8) M failed to alter the uterine basal production of 14CO2 from labelled glucose in animals at estrus. BN52021, a specific PAF antagonist employed at 10(-5) M, blocked completely the action of PAF in the pregnant rat uterus. PGE1, PGE2 and PGF2 alpha enhanced significantly the formation of 14CO2 from labelled glucose in uteri from 5 days pregnant rats. Indomethacin, a well known inhibitor of prostaglandin synthesis, did not alter the basal glucose metabolism in uteri from 5 days pregnant rats, but antagonized completely the stimulating action of PAF on 14CO2 production from labelled glucose an effect that was partially reverted by the addition of PGE1, PGE2 or PGF2 alpha (10(-7) M). Furthermore, nordihydroguaiaretic acid (NDHGA), a specific inhibitor of 5-lipoxygenase at 10(-5) M, as well as FPL-55712, an antagonist of leukotrienes (LTs), at the same concentration, blocked the action of PAF on the metabolism of glucose. The action of NDHGA was partially counteracted by the addition of LTC4 at 10(-7) M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The induction of the respiratory burst in human neutrophils by combinations of fMLP and either PAF or LTB4 was studied. Pretreatment with PAF (0.0001 to 10 uM), which by itself did not elicit the burst, greatly enhanced the rate and extent of fMLP-induced superoxide production. A synergism of a different kind was observed with the reversed stimulus sequence: Pretreatment with fMLP made the neutrophils capable to respond to PAF with superoxide production. A moderate enhancement of the fMLP response was also obtained following pretreatment with LTB4. The response of the cells to LTB4, however, was not influenced by fMLP, and no synergism was observed between the two neutrophil products PAF and LTB4. The results of this study demonstrate a marked synergism between fMLP and PAF and suggest that PAF may function as an amplifier of the respiratory burst response of stimulated neutrophils.  相似文献   

10.
Systemic hypoxia produces a rapid microvascular inflammatory response characterized by increased reactive oxygen species (ROS) levels, leukocyte-endothelial adherence and emigration, and increased vascular permeability. The lipid inflammatory mediator leukotriene B(4) (LTB(4)) is involved in the early hypoxia-induced responses (ROS generation and leukocyte adherence). Whether other lipid inflammatory mediators participate in this phenomenon is not known. The objective of these experiments was to study the role of platelet-activating factor (PAF) in the microvascular inflammatory response to hypoxia and its potential interactions with LTB(4) in this response. Intravital microscopy was used to examine mesenteric venules of anesthetized rats. We found that WEB-2086, a PAF receptor antagonist, completely prevented the increase in ROS levels and leukocyte adherence during a brief reduction in inspired Po(2) to anesthetized rats; administration of either WEB-2086 or the LTB(4) antagonist LTB(4)-DMA attenuated leukocyte emigration and the increase in vascular permeability to the same extent during prolonged systemic hypoxia in conscious rats. Furthermore, no additive effect was observed in either response when both antagonists were administered simultaneously. This study demonstrates a role for PAF in the rapid microvascular inflammatory response to hypoxia, as well as contributions of PAF and LTB(4) to the slowly developing responses observed during sustained hypoxia. The incomplete blockade of the hypoxia-induced increases in vascular permeability and leukocyte emigration by combined administration of both antagonists indicates that factors in addition to LTB(4) and PAF participate in these phenomena.  相似文献   

11.
BACKGROUND: Platelet-activating factor (PAF) is a potent inflammatory lipid mediator that increases vascular permeability and vasodilation. Several studies have addressed the effect of PAF on nitric oxide (NO) production from microvessels in vivo. OBJECTIVE: The aim of present study was to evaluate the effect of PAF on NO production in primary cultured human vascular endothelial cells. METHODS: Human umbilical vein endothelial cells (HUVECs) were loaded with diaminorhodamine-4M acetoxymethyl ester (DAR-4MAM), and the cells were stimulated with PAF. Intracellular NO production was monitored as increase in fluorescence intensity. Also, NO production was visualized at cellular levels using DAR-4M AM and fluorescence imaging. RESULTS: Significant increases in NO production in HUVECs were soon after the PAF stimulation, reaching a plateau after 10 min of the stimulation. The increase of NO production at 10 min after the stimulation was statistically significant (p<0.05) for 0.01-10 microM PAF. PAF-induced NO production was abolished by pretreatment of HUVECs with a NOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA) or PAF receptor antagonist BN 52021. LysoPAF, the inactive metabolite of PAF, did not exert a significant effect on intracellular NO levels. CONCLUSIONS: These results provide direct evidence that PAF cause intracellular NO production via activation of PAF receptors in human vascular endothelial cells.  相似文献   

12.
Using suitable immunomodulators (Corynebacterium parvum vaccine, Zymosan or muramyl dipeptide), lipopolysaccharides (LPS) from various members of the family Enterobacteriaceae (Escherichia, Salmonella, Serratia, Shigella) were tested on rabbits in relation to the production of tumor necrosis factor (TNF). TNF was determined by means of the serum titration of L-929 cell cultures in the presence of Actinomycin D, this with resulting titres of 3.2 x 10(3) to 5.1 x 10(4) IU TNF/ml. Analogous titres were noted after the action of denatured LPS (ie LPS subjected to alkaline hydrolysis or H2O2).  相似文献   

13.
The role of platelet-activating factor (PAF) in heterotypic cell to cell interactions in a rabbit neutrophil-platelet mixture model was investigated. Platelets were exposed to each of three chemotactic agonists: PAF, leukotriene B4 (LTB4), or FMLP. Only PAF stimulated aggregation, [3H]serotonin secretion, and cytosolic Ca2+ mobilization in platelets alone. However, platelets were stimulated by LTB4 and FMLP in the presence of neutrophils. This neutrophil-dependent platelet activation was blocked by pretreatment of platelets with PAF receptor antagonists, and was prevented by desensitization of platelets to PAF. Furthermore, the time-course of platelet activation showed a positive correlation with PAF production by neutrophils stimulated with either LTB4 or FMLP. The PAF-mediated neutrophil-platelet interaction was dependent on direct cell to cell contact, as demonstrated by experiments in which the majority of newly formed PAF was neutrophil associated (rather than released). Platelet activation did not occur when the neutrophil-platelet mixture was not stirred, minimizing cell to cell contact, or when platelets were challenged with a cell-free supernatant prepared from neutrophils activated with LTB4 or FMLP. Finally, the neutrophil-platelet interaction was abolished by SC-49992, a peptidomimetic of the fibrinogen binding sequence Arg-Gly-Asp-Phe, indicating a Arg-Gly-Asp-specific recognition mechanism. Our results demonstrate that neutrophil-generated PAF plays a crucial role in neutrophil-dependent platelet activation in this model system. This type of intercellular signaling event may be important in certain inflammatory or thrombotic processes.  相似文献   

14.
Isolated human polymorphonuclear leukocytes (PMNL) stimulated by platelet activating factor (PAF), leukotriene B(4) (LTB(4)) or opsonized zymosan (OZ) released adenosine measured by thermospray high performance liquid chromatography mass spectrometry in the cell-free supernatants. Stimulation by PAF or LTB(4) resulted in a bellshaped concentration-effect curve; 5 x 10(-7) M PAF, 10(-8) M LTB(4) and 500 mug ml(-1) OZ induced peak adenosine release, thus cytotoxic concentrations did not elevate adenosine level in the supernatants. Therefore adenosine release was characteristic of viable cells. As calculated from concentration-effect curves, the rank order of potency for adenosine release was PAF > LTB > OZ. These resuits suggest that adenosine, when bound specifically to membrane receptor sites, may initiate signal transduction, and, in co-operation with other inflammatory mediators, may modulate phagocyte function, e.g. production of chemoluminescence (CL).  相似文献   

15.
Reactive oxygen species (ROS) are important regulatory molecules implicated in the signaling cascade triggered by tumor necrosis factor (TNF)-alpha, although the events through which TNF-alpha induces ROS generation are not yet well characterized. We therefore investigated selected candidates likely to mediate TNF-alpha-induced ROS generation. Consistent with the role of Rac in that process, stable expression of Rac(Asn-17), a dominant negative Rac1 mutant, completely blocked TNF-alpha-induced ROS generation. To understand better the mediators downstream of Rac, we investigated the involvement of cytosolic phospholipase A(2) (cPLA(2)) activation and metabolism of the resultant arachidonic acid (AA) by 5-lipoxygenase (5-LO). TNF-alpha-induced ROS generation was blocked by inhibition of cPLA(2) or 5-LO, but not cyclooxygenase, suggesting that TNF-alpha-induced ROS generation is dependent on synthesis of AA and its subsequent metabolism to leukotrienes. Consistent with that hypothesis, TNF-alpha Rac-dependently stimulated endogenous production of leukotriene B(4) (LTB(4)), while exogenous application of LTB(4) increased levels of ROS. In contrast, application of leukotrienes C(4), D(4), and E(4) or prostaglandin E(2) had little effect. Our findings suggest that LTB(4) production by 5-LO is situated downstream of the Rac-cPLA(2) cascade, and we conclude that Rac, cPLA(2), and LTB(4) play pivotal roles in the ROS-generating cascade triggered by TNF-alpha.  相似文献   

16.
Production of platelet-activating factor (PAF) during opsonized zymosan stimulation of human polymorphonuclear leukocytes is dependent on the concentration of extracellular albumin and on the presence of exogenous fatty acids. Fatty acid-free albumin caused a concentration-dependent increase in PAF synthesis up to 5% albumin concentrations (w/v) where the amount of PAF produced was three- to four-fold higher than in controls containing no albumin. The addition of free fatty acids, particularly arachidonic acid and palmitic acid, to 5% fatty acid-free albumin media caused a concentration-dependent decrease in PAF synthesis. A 50% inhibition of PAF synthesis was observed at an arachidonic acid concentration of 120 microM and at a palmitic acid concentration of 100 microM. The inhibition of PAF production by palmitic acid was also dependent on the concentration of extracellular albumin. In 0.5% fatty acid-free albumin media, a palmitic acid concentration of 40 microM produced a 50% inhibition in PAF synthesis. The addition of palmitic acid did not affect the release of endogenous arachidonic acid during stimulation. In contrast, the addition of stearic acid up to 120 microM in 5% fatty acid-free albumin media had no effect on PAF production. The different inhibitory effects of palmitic acid and stearic acid on PAF production may be related to differences in intracellular utilization of these two fatty acids during cell stimulation.  相似文献   

17.
Human neutrophils synthesize platelet-activating factor (PAF) and leukotriene B4 (LTB4) when stimulated with the Ca2+ ionophore A23187. These processes are enhanced to a variable extent by phorbol 12-myristate 13-acetate (PMA), a direct activator of protein kinase C. The long chain amines sphingosine, stearylamine (Hannun, Y.A., Loomis, C.R., Merrill, A.H., Jr., and Bell, R.M. (1986) J. Biol. Chem. 261, 12604-12609), and palmitoylcarnitine competitively inhibit activation of purified protein kinase C in vitro and inhibit protein kinase C-mediated activation of the respiratory burst in human neutrophils (Wilson, E., Olcott, M.C., Bell, R.M., Merrill, A.H., Jr., and Lambeth, J.D. (1986) J. Biol. Chem. 261, 12616-12623). These amines were found to inhibit A23187-induced PAF and LTB4 synthesis. Inhibition of PAF and LTB4 synthesis occurred in parallel; half-maximal inhibition by sphingosine occurred at 7 microM, with complete inhibition at 15 microM. PMA by itself did not induce the synthesis of PAF or LTB4, although it did enhance PAF and LTB4 synthesis at suboptimal concentrations of A23187. PMA reversed long chain amine inhibition of PAF and LTB4 accumulation. Reversal of the inhibition of PAF and LTB4 accumulation occurred in parallel, was concentration-dependent, and was complete by approximately 3 x 10(-8) M PMA. The inactive 4 alpha-phorbol didecanoate ester did not reverse inhibition at these concentrations. Sphingosine completely prevented the A23187-induced release of [3H]arachidonate and its various metabolites from [3H]arachidonate-labeled cells. PMA, but not 4 alpha-phorbol didecanoate, restored arachidonate release and its metabolism. Therefore, while activation of protein kinase C is not sufficient to induce PAF and LTB4 synthesis, its action appears to be required to couple a rise in intracellular Ca2+ to their synthesis. This coupling occurs at the level of the initial reaction in the production of lipid mediators, a phospholipase A2-like activity that mobilizes the two substrates 1-O-alkyl-sn-glycero-3-phosphocholine and arachidonic acid from complex lipids.  相似文献   

18.
Exposure of human polymorphonuclear neutrophils (PMN) to human monocyte derived neutrophil activating factor(s) (NAF) resulted in a concentration-dependent extracellular release of granule constituents. NAF also induced the generation of 5(S),12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid [Leukotriene B4 (LTB4)] by PMNs which was enhanced in the presence of exogenous arachidonic acid (AA). In contrast to its enhancing effect on LTB4 production, AA inhibited NAF-stimulated PMN degranulation. 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid (15-HETE), a product of the 15-lipoxy-genation of AA in PMNS, caused a concentration-dependent suppression of degranulation and LTB4 generation by PMNs in contact with NAF. 15-HETE also inhibited the rise in cytosolic-free calcium [( Ca2+]i) observed in NAF activated PMNs. These data suggest that AA and a 15-lipoxygenase product modulate the NAF-associated activation pathway in human PMNs.  相似文献   

19.
LY 255283 [(1-(5-ethyl-2-hydroxy-4-(6-methyl-6-)1H-tetrazol-5-yl)-heptyloxy) phenyl)ethanone], a specific leukotriene B(4) (LTB(4)) receptor antagonist, inhibited the production of LTB(4) in human peripheral blood polymorphonuclear leukocytes (PMNL) and in monocytes activated by calcium ionophore A23187. In human monocytes activated by ionophore it inhibited also the production of thromboxane B(2) (TXB(2)). The effect of LY 255283 on 5-lipoxygenase (5-LO) and LTA(4) hydrolase activities which catalyse the production of LTB(4) and LTA(4) has not been studied yet. It is thought that LY 255283 may inhibit the production of LTB(4) and TXA(2) by antagonising the effect of ionophore-induced LTB(4) on 5-lipoxygenase and cyclooxygenase in human peripheral blood PMNL and monocytes.  相似文献   

20.
Glucocorticoids stimulate polyclonal immunoglobulin (Ig) production in cultures of human peripheral blood lymphocytes. The mechanism of action of glucocorticoids in this system, and indeed in any physiologic system, is unknown. Because glucocorticoids stimulate the production of phospholipase A2-inhibitory glycoproteins, we investigated whether glucocorticoids stimulate polyclonal Ig production by inhibition of arachidonic acid metabolism. Nonspecific lipoxygenase/cyclooxygenase inhibitors stimulate polyclonal Ig production in a manner similar to the effect of glucocorticoids, whereas specific cyclooxygenase inhibitors actually inhibit Ig production. Two specific 5-lipoxygenase inhibitors, with little or no activity against cyclooxygenase or other lipoxygenases, also stimulate Ig production. The dose-response effect of all of these drugs on Ig production was similar to the dose response of inhibition of 5-lipoxygenase. Leukotriene B4 (LTB4) added in low concentrations (10(-10)M) on days 1, 2, and 3 of a culture eliminated the stimulatory effect of glucocorticoids or 5-lipoxygenase inhibitors, whereas LTC4, LTD4, prostaglandin E, or 5-hydroxyeicosatetraenoic acid had no effect. These results suggest that the relevant action of glucocorticoids in stimulating Ig production might be in preventing endogenous arachidonic acid metabolism, perhaps the endogenous production of LTB4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号