首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six medicinal plants such as Amaranthus spinosus, Barbeya oleoides, Clutia lanceolata, Lavandula pubescens, Maerua oblongifolia and Withania somnifera collected from different locations in the southwestern part of Saudi Arabia were tested for antifungal activities against five plant pathogenic fungi causing serious diseases of vegetable crops. These fungi were Alternaria brassicae, Alternaria solani, Botrytis fabae, Fusarium solani and Phytophthora infestans. Aqueous plant extracts reduced mycelial growth and inhibited spore germination of all fungi tested. It is clear that the aqueous extract of Lavandula pubescens leaves was the best for controlling all phytopathogenic fungi under study. These results suggested that medicinal plant extracts play an important role in controlling the phytopathogenic fungi.  相似文献   

2.
The increasing resistance of plant diseases caused by phytopathogenic fungi highlights the need for highly effective and environmentally benign agents. The antifungal activities of Cnidium monnieri fruit extracts and five isolated compounds as well as structurally related coumarins against five plant pathogenic fungi were evaluated. The acetone extract, which contained the highest amount of five coumarins, showed strongest antifungal activity. Among the coumarin compounds, we found that 4-methoxycoumarin exhibited stronger and broader antifungal activity against five phytopathogenic fungi, and was more potent than osthol. Especially, it could significantly inhibit the growth of Rhizoctonia solani mycelium with an EC50 value of 21 μg mL−1. Further studies showed that 4-methoxycoumarin affected the structure and function of peroxisomes, inhibited the β-oxidation of fatty acids, decreased the production of ATP and acetyl coenzyme A, and then accumulated ROS by damaging MMP and the mitochondrial function to cause the cell death of R. solani mycelia. 4-Methoxycoumarin presented antifungal efficacy in a concentration- dependent manner in vivo and could be used to prevent the potato black scurf. This study laid the foundation for the future development of 4-methoxycournamin as an alternative and friendly biofungicide.  相似文献   

3.
A series of sarisan analogs containing 1,3,4‐oxadiazole moieties were synthesized by iodine‐mediated oxidative cyclization and screened in vitro for their antifungal activities at 50 μg/mL against five phytopathogenic fungi such as Valsa mali, Curvularia lunata, Alternaria alternate, Fusarium solani and Fusarium graminearum. 1,3,4‐Oxadiazole derivatives 7e , 7p , 7r , 7t and 7u exhibited potent and a broad spectrum of antifungal activities against at least three phytopathogenic fungi at the concentration of 50 μg/mL. Especially, compound 7r displayed more potent antifungal activities against five phytopathogenic fungi than the positive control hymexazol. The EC50 of 7r against V. mali, C. lunata and A. alternate were 12.6, 14.5 and 17.0 μg/mL, respectively. Additionally, some interesting results of structure‐activity relationships (SARs) were also observed.  相似文献   

4.
Dor E  Joel DM  Kapulnik Y  Koltai H  Hershenhorn J 《Planta》2011,234(2):419-427
Strigolactones that are released by plant roots to the rhizosphere are involved in both plant symbiosis with arbuscular mycorrhizal fungi and in plant infection by root parasitic plants. In this paper, we describe the response of various phytopathogenic fungi to the synthetic strigolactone GR24. When GR24 was embedded in the growth medium, it inhibited the growth of the root pathogens Fusarium oxysporum f. sp. melonis, Fusarium solani f. sp. mango, Sclerotinia sclerotiorum and Macrophomina phaseolina, and of the foliar pathogens Alternaria alternata, Colletotrichum acutatum and Botrytis cinerea. In the presence of this synthetic strigolactone, intense branching activity was exhibited by S. sclerotiorum, C. acutatum and F. oxysporum f. sp. melonis. Slightly increased hyphal branching was observed for A. alternata, F. solani f. sp. mango and B. cinerea, whereas suppression of hyphal branching by GR24 was observed in M. phaseolina. These results suggest that strigolactones not only affect mycorrhizal fungi and parasitic plants, but they also have a more general effect on phytopathogenic fungi.  相似文献   

5.
为充分开发黄花倒水莲(Polygala fallax)的内生真菌资源,获得具有抗植物病原真菌、抗氧化活性的内生真菌,该文以黄花倒水莲内生真菌为研究对象,使用平板对峙法检测内生真菌对6种植物病原真菌的抑菌活性,测定内生真菌发酵液的DPPH清除自由基能力和总还原能力,评价内生真菌的抗氧化活性,并对具有强抑菌活性和抗氧化活性的菌株进行形态和ITS鉴定。结果表明:(1)黄花倒水莲内生真菌中有2株内生真菌对香蕉专化尖孢镰刀菌、柑橘树脂病菌、叶点霉菌、香蕉具条叶斑病菌、茄病镰刀菌、三七根腐病菌具有明显的抑菌活性,抑菌率在50.3%~91.4%之间,其中HNLF-5对柑橘树脂病菌的抑菌率为73.2%,HNLF-44对香蕉专化尖孢镰刀菌抑菌率为91.4%。(2)内生真菌发酵液具有良好的抗氧化活性,DPPH清除率均在80%以上,总还原能力吸光值范围为0.279 2~0.748 8。(3)HNLF-44菌株为链格孢属真菌。该研究表明,药用植物黄花倒水莲内生真菌具有较好的生物活性,为后续从黄花倒水莲内生真菌中挖掘潜在新型抑菌活性和抗氧化活性物质奠定了基础。  相似文献   

6.
Investigation of plants containing natural anti-microbial metabolites for plant protection has been identified as a desirable method of disease control. Crude methanolic extracts of 43 plant species belonging to 27 families, which most of them are medicinal plants, mostly collected from the west of Iran were screened for anti-fungal activity against two economically important phytopathogenic fungi, Alternaria solani and Botrytis cinerea during 2010–2012. Bioassay of the extracts was conducted by agar diffusion method on agar plate cultures with five replications. Among all the 43 plant methanolic extracts, mycelia growth of A. solani and B. cinerea was reduced by 28 (65%) and 30 (70%) plant extracts when compared to the control, respectively. The strongest extracts with more than 50% inhibition against A. solani were Elaeagnus angustifolia, Dodonaea viscosa, Haplophyllum perforatum and inflorescence of Allium hirtifolium, respectively. Leaves of A. hirtifolium, H. perforatum, inflorescence of A. hirtifolium and D. viscosa showed highest inhibitory effect (≥50%) against B. cinerea. Moreover, complete inhibition of leaves of A. hirtifolium against B. cinerea was due to their fungistatic activity. The results of this experiment and high number of plants with anti-fungal activity showed that the flora in the west of Iran could be regarded as a rich source of plants with anti-fungal activity. Therefore, further screening of other plant species, identifying active fractions or metabolites and in vivo application of active extracts are warranted.  相似文献   

7.
Pedras MS  Hossain S 《Phytochemistry》2011,72(18):2308-2316
Glucosinolates represent a large group of plant natural products long known for diverse and fascinating physiological functions and activities. Despite the relevance and huge interest on the roles of indole glucosinolates in plant defense, little is known about their direct interaction with microbial plant pathogens. Toward this end, the metabolism of indolyl glucosinolates, their corresponding desulfo-derivatives, and derived metabolites, by three fungal species pathogenic on crucifers was investigated. While glucobrassicin, 1-methoxyglucobrassicin, 4-methoxyglucobrassicin were not metabolized by the pathogenic fungi Alternaria brassicicola, Rhizoctonia solani and Sclerotinia sclerotiorum, the corresponding desulfo-derivatives were metabolized to indolyl-3-acetonitrile, caulilexin C (1-methoxyindolyl-3-acetonitrile) and arvelexin (4-methoxyindolyl-3-acetonitrile) by R. solani and S. sclerotiorum, but not by A. brassicicola. That is, desulfo-glucosinolates were metabolized by two non-host-selective pathogens, but not by a host-selective. Indolyl-3-acetonitrile, caulilexin C and arvelexin were metabolized to the corresponding indole-3-carboxylic acids. Indolyl-3-acetonitriles displayed higher inhibitory activity than indole desulfo-glucosinolates. Indolyl-3-methanol displayed antifungal activity and was metabolized by A. brassicicola and R. solani to the less antifungal compounds indole-3-carboxaldehyde and indole-3-carboxylic acid. Diindolyl-3-methane was strongly antifungal and stable in fungal cultures, but ascorbigen was not stable in solution and displayed low antifungal activity; neither compound appeared to be metabolized by any of the three fungal species. The cell-free extracts of mycelia of A. brassicicola displayed low myrosinase activity using glucobrassicin as substrate, but myrosinase activity was not detectable in mycelia of either R. solani or S. sclerotiorum.  相似文献   

8.
An Acinetobacter strain, given the code name LCH001 and having the potential to be an endophytic antagonist, has been isolated from healthy stems of the plant Cinnamomum camphora (L.) Presl, guided by an in vitro screening technique. The bacterium inhibited the growth of several phytopathogenic fungi such as Cryphonectria parasitica, Glomerella glycines, Phytophthora capsici, Fusarium graminearum, Botrytis cinerea, and Rhizoctonia solani. Biochemical, physiological, and 16S rDNA sequence analysis proved that it is Acinetobacter baumannii. When the filtrate from the fermentation broth of strain LCH001 was tested in vitro and in vivo, it showed strong growth inhibition against several phytopathogens including P. capsici, F. graminearum, and R. solani, indicating that suppression of the growth of the fungi was due to the presence of antifungal compounds in the culture broth. Moreover, the antifungal activity of the culture filtrate was significantly correlated with the cell growth of strain LCH001. The active metabolites in the filtrate were relatively thermally stable, but were sensitive to acidic conditions. Three antifungal compounds were isolated from the culture broth by absorption onto macropore resin, ethanol extraction, chromatography on silica gel or LH-20 columns, and crystallization. The structures of the bioactive compounds were identified by spectroscopic methods as isomers of iturin A, namely, iturin A2, iturin A3, and iturin A6. The characterization of an unusual endophytic bacterial strain LCH001 and its bioactive components may provide an alternative resource for the biocontrol of plant diseases.  相似文献   

9.
The fungitoxic effect of various medicinal plants belonging to different families was evaluated in vitro on Rhizoctonia solani, the rice sheath blight pathogen. Of the various plant extracts, the leaf extract of zimmu (Allium cepa × Allium sativum) showed the maximum antifungal activity against R. solani and recorded an inhibition zone of 12?mm. The leaf extract of zimmu was also effective in inhibiting the growth of other agronomically important fungal and bacterial pathogens viz., Aspergillus flavus, Curvularia lunata, Alternaria solani, Xanthomonas oryzae pv. oryzae, Xanthomonas campestris pv. malvacearum and Xanthomonas axonopodis pv. citri. The antimicrobial compound was dissoluble in methanol and the methanolic extract showed the absorption maxima at 210?nm and 230?nm. Phenolic compounds were present in greater amounts in methanol extract of zimmu. TLC analysis showed the appearance of two blue spots at R f ?=?0.65 and R f ?=?0.90. The compounds eluted at R f ?=?0.65 and R f ?=?0.90 by preparative TLC exhibited strong antifungal activity against R. solani.  相似文献   

10.
The aims of this study were to evaluate the antifungal properties of Baccharis glutinosa and Ambrosia confertiflora extracts against Aspergillus flavus, A. parasiticus and Fusarium verticillioides, and to isolate the group of compounds that are responsible for the antifungal activity. Samples of aerial parts from each plant were extracted with 70% methanol and sequentially partitioned with hexane, ethyl acetate, and n-butanol. The partitioned fractions were evaluated in their capacity to inhibit the radial growth of the three species of fungi. The active fraction was used for an assay-guided chromatography of antifungal extracts. The results showed that the extract from B. glutinosa partitioned in ethyl acetate (Bea) showed the highest antifungal activity against the three fungi. Bea completely inhibited the growth of F. verticillioides at 0.8 mg/ml, whereas the radial growth of A. flavus and A. parasiticus was inhibited 70% at 1.5 mg/ml. The purified antifungal fraction from Bea showed 72, 54, and 52% of antifungal activity, respectively.  相似文献   

11.
Abstract

Antifungal activity-guided assay of solvent extracts of Decalepis hamiltonii (Wight & Arn) (Asclepiadaceae) against important phytopathogenic fungi, known to cause diseases in sorghum, maize and paddy proved to be highly significant. Among the five solvent extracts tested, Petroleum ether extract showed highly significant antifungal activity. Phytochemical analysis revealed that the antifungal active principle is a phenolic compound. TLC separation of the phenolic fraction using chloroform as an eluting solvent revealed the presence of seven bands but the antifungal activity was observed only in band five with Rf value 0.77. The antifungal active compound is identified as 2-hydroxy-4-methoxybenzaldehyde based on Nuclear Magnetic Resonance (NMR) and mass spectral analysis. The Minimal inhibitory concentration (MIC) varied between 200 μg ml?1 and 700 μg ml?1 depending on the fungal species. Seed treatment of the active principle significantly increased seed germination and seed vigour with a corresponding decrease in seed mycoflora. The antifungal active compound was effective against all the 24 fungal species tested suggesting broad-spectrum antifungal activity. Comparative evaluation of the active principle with the synthetic fungicides revealed that the antifungal activity of the active principle obtained from the plant is better than that of synthetic fungicide. This plant being an edible one can be exploited in the management of seed-borne pathogenic fungi and the prevention of biodeterioration of grains and mycotoxin elaboration during storage.  相似文献   

12.
The aqueous and different solvent extracts viz., petroleum ether, chloroform, methanol and ethanol extracts of leaf and leaf derived callus of Cardiospermum halicacabum L. (Sapindaceae) at different concentrations were screened in vitro for antifungal activity by the poisoned food technique against a wide array of seed-borne phytopathogenic fungi. The test organisms include Aspergillus flavus, A. niger, Curvularia lunata, Drechslera halodes, Fusarium moniliforme, F. solani, and F. oxysporum, which are frequently associated with sorghum [Sorghum bicolor (L.) Moench], maize (Zea mays L.) and paddy (Oryza sativa L.) seeds. Aqueous leaf extracts of C. halicacabum showed significant inhibition was observed at 50% concentration particularly in Aspergillus species. With regard to the comparative efficiency of leaf and leaf derived callus extracts, aqueous leaf extract was found to be more effective than callus extract. Among the different solvent extracts, it was observed that at 3000 ppm concentration methanol extract of C. halicacabum leaf recorded the highest degree of activity and percentage inhibition was more, but in petroleum ether and chloroform extracts did not show any significant activity. C. halicacabum leaf derived callus at 3000 ppm methanol extract showed significant antifungal activity on Fusarium species. Leaf of C. halicacabum aqueous and methanol extract showed significant antifungal activity against all the tested fungi. C. halicacabum has significant medicinal value, hence the results of the present investigation indicate that it could be exploited in the management of seed-borne pathogenic fungi.  相似文献   

13.
Strain CF-66 with strong antifungal activity against Rhizoctonia solani was isolated from compost samples. It is clearly demonstrated that strain CF-66 is belonging to Burkholderia cepacia complex by the morphological and biochemical tests and 16S rDNA sequence. The B. cepacia complex consists of a group of bacteria currently organized into nine genomovars, among them genomovar II and genomovar III, contain the highly epidemic strains. However, it was known that strain CF-66 is not a member of genomovar II or III of the B. cepacia complex by species-specific polymerase chain reaction assay. In this study, the antifungal compound CF66I produced by strain CF-66 was purified and characterized. Based on the nuclear magnetic resonance, GC-MS spectral and infrared spectral data, CF66I was confirmed to have amide bonds, α-metyl fatty acid, bromine, and some structural units such as CH2CH2O. CF66I is stable to high temperature, proteolytic enzymes, and organic solvents. CF66I inhibit the growth of a variety of plant pathogenic fungi and pathogenic yeast, whereas bacterial cells are unaffected. CF66I mainly reduced hyphal extension rates in a dose-dependent manner and induced severe change in cell morphology that resulted in swelled and formed very short hyphae with multiple branches.  相似文献   

14.
The aim of the present study was to examine the efficacy of various seed extracts of Terminalia chebula as an antifungal potential against certain important plant pathogenic fungi. The organic extracts of methanol, ethyl acetate and chloroform at the used concentration of 1500 ppm/disc revealed remarkable antifungal effect as a fungal mycelial growth inhibitor against Fusarium oxysporum, Fusarium solani, Phytophthora capsici and Botrytis cinerea, in the range of 41.6–61.3%, along with MIC values ranging from 62.5 to 500 μg/ml. Also, the extracts had a strong detrimental effect on spore germination of all the tested plant pathogens along with concentration as well as time-dependent kinetic inhibition of B. cinerea. The results obtained from this study suggest that the natural products derived from Terminalia chebula could become an alternative to synthetic fungicides for controlling such important plant pathogenic fungi.  相似文献   

15.
The aim of this work was to study the antifungal action of a protein and peptide-rich fraction from Amburana cearensis seeds. Initially, proteins were extracted from seed flour in phosphate buffer and re-extracted with 1 M lithium chloride. The products obtained from both extractions were precipitated with ammonium sulfate at 70% saturation, and the precipitates were re-suspended in distilled water, heated at 80°C for 15 min and clarified by centrifugation at 12,000×g. The obtained fractions from both extractions were dialyzed, recovered by lyophilization and visualized in Tris–Tricine/SDS gel electrophoresis. The fractions obtained were rich in proteins of low molecular weight and were submitted to antifungal assays. Fraction S4 (extraction with phosphate buffer) inhibited the fungi, Colletotrichum lindemuthianum, Fusarium oxysporum, Fusarium solani, Candida albicans and Saccharomyces cerevisiae. Fractions P2 (re-extraction with lithium chloride) had a low or non-inhibitory effect on the fungi tested.  相似文献   

16.
Many Plant extracts had proved a potential antifungal activity against a wide range of phytopathogenic fungi. The aim of this study was to evaluate the antifungal activity of the aqueous extracts of Rumex vesicarius L. and Ziziphus spina-christi (L) Desf. against some fungal species. The effect on growth inhibition, conidia germination, sporogenesis, morphological, and ultrastructural characterizations of fungal growth by scanning and transmission electron microscopes, have been investigated. Both plant extracts exhibited an antifungal activity against Fusarium, Helminthosporium, Alternaria, and Rhizoctonia species, besides, the sporogenesis of Alternaria and Fusarium species was suppressed. Both plants induced severe morphological changes in the hyphal shape and surface. We concluded that the aqueous extracts of these plants had strong antifungal activities. More investigations should be performed to evaluate the possible applications in agriculture and in vivo.  相似文献   

17.
In order to find novel potential antifungal agrochemicals, a series of new 4-(1,2,4-oxadiazol-3-yl)-N-(4-phenoxyphenyl)benzamide derivatives 3a – j were designed, synthesized and characterized by their 1H - , 13C-NMR and HRMS spectra. The preliminary antifungal assay in vitro revealed that compounds 3a – j exhibited moderate to good antifungal activity against five plant pathogenic fungi. Especially, compound 3e presented significant antifungal activity against Alternaria solani, Botrytis cinerea and Sclerotinia sclerotiorum, superior to positive control boscalid. In the in vivo antifungal assay on tomato plants and cucumber leaves, compound 3e presented good inhibition rate against B. cinerea at 200 mg/L. Molecular dynamics simulation revealed that compound 3e could bind with the active site of class II histone deacetylase (HDAC).  相似文献   

18.
In search for SDHIs fungicides, twenty-five novel carboxamides containing a chalcone scaffold were designed, synthesized, and evaluated for antifungal activities against five pathogenic fungi. The results showed that compound 5 k exhibited outstanding antifungal activity against R. solani with an EC50 value of 0.20 μg/mL, which was much better than that of commercial SDHIs Boscalid (EC50=0.74 μg/mL). Moreover, compound 5 k also displayed promising antifungal activities against S. sclerotiorum, B. cinerea, and A. alternate (IC50=2.53–4.06 μg/mL), indicating that 5 k had broad-spectrum antifungal activity. Additionally, in vivo antifungal activities results showed that 5 k could significantly inhibit the growth of R. solani in rice leaves with good protective efficacy (57.78 %) and curative efficacy (58.45 %) at 100 μg/mL, both of which were much better than those of Boscalid, indicating a promising application prospect. Moreover, SEM analysis showed that compound 5 k could remarkably disrupt the typical structure and morphology of R. solani hyphae. Further SDH enzyme inhibition assay and molecular docking study revealed that lead compound 5 k had a similar mechanism of action as commercial SDHI Boscalid. These results indicated that compound 5 k showed potential as a SDHIs fungicide and deserved further investigation.  相似文献   

19.
Root extracts of black nightshade (Solanum nigrum) were analyzed for activity against isolates ABA‐31 and ABA‐104 of Alternaria brassicicola, the causal agent of black leaf spot of Chinese cabbage (Brassica pekinensis). Preliminary results showed that dried root tissues of black nightshade extracted with 70% ethanol contained antifungal properties against A. brassicicola. Ethanol root extracts were used for further fractionations using ethyl acetate, n‐butanol and water. Among the three extracts, the n‐butanol fraction showed the strongest antifungal activity by its suppression of conidial germination of A. brassicicola. The n‐butanol extract of S. nigrum roots was fractionated further into six fractions (I–VI). Among the six fractions tested, fraction V showed a strong inhibitory effect on conidial germination of A. brassicicola and thereby suppressed lesion development of black leaf spot of Chinese cabbage at a concentration of 25 ppm or higher. Nuclear magnetic resonance analysis indicated that fraction V contained a mixture of saponins, and results of further bio‐guided fractionation and bioassay suggested that saponins in fraction V were key chemical components in the control of A. brassicicola. The potential of using black nightshade for developing natural products for the control of fungal plant diseases is discussed.  相似文献   

20.
The present work demonstrates the screening of extracts of the rare medicinal herb Euphorbia fusiformis for antifungal activity. The main aim was to investigate its antifungal properties against Candida albicans and Cryptococcus neoformans, the causative agents of human candidiasis and cryptococcosis, respectively. Aqueous and organic solvent extracts from the leaves and rootstock of the plant were tested against the fungi by the well-in-agar method. Almost all the organic solvent extracts exhibited an inhibitory effect against C. albicans and to some extent on C. neoformans, except for the aqueous extracts, which had no effect. The combined formulations of the extracts also had better activity against C. albicans than C. neoformans. This study thus concludes by demonstrating the antifungal properties of E. fusiformis and also the potential research in identifying the active principles, which may have future therapeutic value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号