首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
MicroRNAs have emerged as important players in tissue-specific mammalian gene regulation and have also been exploited in experimental targeting of gene expression. We have constructed a recombinant adenovirus that contains sequences complementary to the liver-specific microRNA 122 (miR122) in the 3′ untranslated region of the E1A gene. In Huh7 cells, which resemble normal hepatocytes in expressing high levels of miR122, this feature resulted in strongly reduced levels of E1A mRNA and protein. This property allowed us to generate a novel recombinant adenovirus that was severely attenuated in cells of hepatic origin but replicated normally in other cells. This strategy may be useful in circumventing liver toxicity associated with the systemic delivery of oncolytic adenoviruses. These data provide the first example of exploiting differential microRNA expression patterns to alter the natural tropism of a DNA virus. In addition, these results suggest that other microRNAs expressed in a tissue- or transformation-specific manner may also be used for the targeting of adenoviral replication and that the same principle may be applied to other viruses that have shown promise as oncolytic or gene delivery platforms.  相似文献   

4.
Studies have demonstrated that oncolytic adenoviruses based on a 24 base pair deletion in the viral E1A gene (D24) may be promising therapeutics for treating a number of cancer types. In order to increase the therapeutic potential of these oncolytic viruses, a novel conditionally replicating adenovirus targeting multiple receptors upregulated on tumors was generated by incorporating an Ad5/3 fiber with a carboxyl terminus RGD ligand. The virus displayed full cytopathic effect in all tumor lines assayed at low titers with improved cytotoxicity over Ad5-RGD D24, Ad5/3 D24 and an HSV oncolytic virus. The virus was then engineered to deliver immunotherapeutic agents such as GM-CSF while maintaining enhanced heterogenic oncolysis.  相似文献   

5.
6.
7.
Clinical applications of tumor gene therapy require tumor-specific delivery or expression of therapeutic genes in order to maximize the oncolytic index and minimize side effects. This study demonstrates activation of transgene expression exclusively in hepatic metastases after systemic application of a modified first-generation (E1A/E1B-deleted) adenovirus vector (AdE1-) in mouse tumor models. The discrimination between tumors and normal liver tissue is based on selective DNA replication of AdE1- vectors in tumor cells. This new AdE1- based vector system uses homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome. As a result of these rearrangements, a promoter is brought into conjunction with a reporter gene creating a functional expression cassette. Genomic rearrangements are dependent upon viral DNA replication, which in turn occurs specifically in tumor cells. In a mouse tumor model with liver metastases derived from human tumor cells, a single systemic administration of replication activated AdE1- vectors achieved transgene expression in every metastasis, whereas no extra-tumoral transgene induction was observed. Here we provide a new concept for tumor-specific gene expression that is also applicable for other conditionally replicating adenovirus vectors.  相似文献   

8.
Oncolytic adenoviruses have emerged as a promising approach for the treatment of tumors resistant to other treatment modalities. However, preclinical safety studies are hampered by the lack of a permissive nonhuman host. Screening of a panel of primary cell cultures from seven different animal species revealed that porcine cells support productive replication of human adenovirus type 5 (Ad5) nearly as efficiently as human A549 cells, while release of infectious virus by cells from other animal species tested was diminished by several orders of magnitude. Restriction of productive Ad5 replication in rodent and rabbit cells seems to act primarily at a postentry step. Replication efficiency of adenoviral vectors harboring different E1 deletions or mutations in porcine cells was similar to that in A549 cells. Side-by-side comparison of the viral load kinetics in blood of swine and mice injected with Ad5 or a replication-deficient adenoviral vector failed to provide clear evidence for virus replication in mice. In contrast, evidence suggests that adenovirus replication occurs in swine, since adenoviral late gene expression produced a 13.5-fold increase in viral load in an individual swine from day 3 to day 7 and 100-fold increase in viral DNA levels in the Ad5-infected swine compared to the animal receiving a replication-deficient adenovirus. Lung histology of Ad5-infected swine revealed a severe interstitial pneumonia. Although the results in swine are based on a small number of animals and need to be confirmed, our data strongly suggest that infection of swine with human adenovirus or oncolytic adenoviral vectors is a more appropriate animal model to study adenoviral pathogenicity or pharmacodynamic and toxicity profiles of adenoviral vectors than infection of mice.  相似文献   

9.
10.
Deciphering the crosstalk between a host cell and a virus during infection is important not only to better define viral biology but also to improve our understanding of cellular processes. We identified the FANC pathway as a helper of viral replication and recombination by searching for cellular targets that are modified by adenovirus (Ad) infection and are involved in its outcome. This pathway, which is involved in the DNA damage response and checkpoint control, is altered in Fanconi anaemia, a rare cancer predisposition syndrome. We show here that Ad5 infection activates the FANC pathway independent of the classical DNA damage response. Infection with a non-replicating Ad shows that the presence of viral DNA is not sufficient to induce the monoubiquitination of FANCD2 but still activates the DNA damage response coordinated by phospho-NBS1 and phospho-CHK1. E1A expression alone fails to induce FANCD2 monoubiquitination, indicating that a productive viral infection and/or replication is required for FANC pathway activation. Our data indicate that Ad5 infection induces FANCD2 activation to promote its own replication. Specifically, we show that FANCD2 is involved in the recombination process that accompanies viral DNA replication. This study provides evidence of a DNA damage-independent function of the FANC pathway and identifies a cellular system involved in Ad5 recombination.  相似文献   

11.
Viruses used for gene therapy are usually genetically modified to deliver therapeutic transgenes and prevent viral replication. In contrast, replication-competent viruses may be used for cancer therapy because replication of some viruses within cancer cells can result in their destruction (oncolysis). Viral ribonucleotide reductase expression is defective in the HSV1 mutant hrR3. Cellular ribonucleotide reductase, which is scarce in normal liver and abundant in liver metastases, can substitute for its viral counterpart to allow hrR3 replication in infected cells. Two or three log orders more of hrR3 virions are produced from infection of colon carcinoma cells than from infection of normal hepatocytes in viral replication assays. This viral replication is oncolytic. A single intravascular administration of hrR3 into immune-competent mice bearing diffuse liver metastases dramatically reduces tumor burden. hrR3-mediated tumor inhibition is equivalent in immune-competent and immune-incompetent mice, suggesting that viral oncolysis and not the host immune response is the primary mechanism of tumor destruction. HSV1-mediated oncolysis of diffuse liver metastases is effective in mice preimmunized against HSV1. These results indicate that replication-competent HSV1 mutants hold significant promise as cancer therapeutic agents. Yoon, S. S., Nakamura, H., Carroll, N. M., Bode, B. P., Chiocca, E. A., Tanabe, K. K. An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma.  相似文献   

12.
13.
Zhang ZL  Zou WG  Luo CX  Li BH  Wang JH  Sun LY  Qian QJ  Liu XY 《Cell research》2003,13(6):481-489
ONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them. To date, clinical trials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone. In this paper, we put forward a novel concept of Gene-ViroTherapy strategy and in this way, we constructed an armed therapeutic oncolytic adenovirus system, ZD55-gene, which is not only deleted of E1B 55-kD gene similar to ONYX-015, but also armed with foreign antitumor gene. ZD55-gene exhibited similar cytopathic effects and replication kinetics to that of ONYX-015 in vitro. Importantly, the carried gene is expressed and the expression level can increase with the replication of virus. Consequently, a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer. Our data demonstrated that ZD55-gene, which utilizing the Gene-Viro Therapy strategy, is more efficacious than each individual component in vivo.  相似文献   

14.
15.
Clinical trials have confirmed the safety of selectively oncolytic adenoviruses for treatment of advanced cancers. However, increasingly effective viruses could result in more toxicity and therefore it would be useful if replication could be abrogated if necessary. We analyzed viruses containing the cyclooxygenase-2 (Cox-2) or vascular endothelial growth factor (VEGF) promoter for controlling replication. Anti-inflammatory agents can lower Cox-2 protein levels and therefore we hypothesized that also the promoter might be affected. As Cox-2 modulates expression of VEGF, also the VEGF promoter might be controllable. First, we evaluated the effect of anti-inflammatory agents on promoter activity or adenovirus infectivity in vitro. Further, we analyzed the oncolytic potency of the viruses in vitro and in vivo with and without the reagents. Moreover, the effect of on virus replication was analyzed. We found that RGD-4C or Ad5/3 modified fibers improved the oncolytic potency of the viruses in vitro and in vivo. We found that both promoters could be downregulated with dexamethasone, sodium salicylate, or salicylic acid. Oncolytic efficacy correlated with the promoter activity and in vitro virus production could be abrogated with the substances. In vivo, we saw good therapeutic efficacy of the viruses in a model of intravenous therapy of metastatic cervical cancer, but the inhibitory effect of dexamethasone was not strong enough to provide significant differences in a complex in vivo environment. Our results suggest that anti-inflammatory drugs may affect the replication of adenovirus, which might be relevant in case of replication associated side effects.  相似文献   

16.
The avian adenovirus CELO is being developed as a gene transfer tool. Using homologous recombination in Escherichia coli, the CELO genome was screened for regions that could be deleted and would tolerate the insertion of a marker gene (luciferase or enhanced green fluorescent protein). For each mutant genome, the production of viable virus able to deliver the transgene to target cells was monitored. A series of mutants in the genome identified a set of open reading frames that could be deleted but which must be supplied in trans for virus replication. A region of the genome which is dispensable for viral replication and allows the insertion of an expression cassette was identified and a vector based on this mutation was evaluated as a gene delivery reagent. Transduction of avian cells occurs at 10- to 100-fold greater efficiency (per virus particle) than with an adenovirus type 5 (Ad5)-based vector carrying the same expression cassette. Most important for gene transfer applications, the CELO vector transduced mammalian cells as efficiently as an Ad5 vector. The CELO vector is exceptionally stable, can be grown inexpensively in chicken embryos, and provides a useful alternative to Ad5-based vectors.  相似文献   

17.
Detection of adenovirus DNA in human tonsillar T cells in the absence of active virus replication suggests that T cells may be a site of latency or of attenuated virus replication in persistently infected individuals. The lytic replication cycle of Ad5 in permissive epithelial cells (A549) was compared to the behavior of Ad5 in four human T-cell lines, Jurkat, HuT78, CEM, and KE37. All four T-cell lines expressed the integrin coreceptors for Ad2 and Ad5, but only Jurkat and HuT78 express detectable surface levels of the coxsackie adenovirus receptor (CAR). Jurkat and HuT78 cells supported full lytic replication of Ad5, albeit at a level approximately 10% of that of A549, while CAR-transduced CEM and KE37 cells (CEM-CARhi and KE37-CARhi, respectively) produced no detectable virus following infection. All four T-cell lines bind and internalize fluorescently labeled virus. In A549, Jurkat, and HuT78 cells, viral proteins were detected in 95% of cells. In contrast, only a small subpopulation of CEM-CARhi and KE37-CARhi cells contained detectable viral proteins. Interestingly, Jurkat and HuT78 cells synthesize four to six times more copies of viral DNA per cell than did A549 cells, indicating that these cells produce infectious virions with much lower efficiency than A549. Similarly, CEM-CARhi and KE37-CARhi cells, which produce no detectable infectious virus, synthesize three times more viral genomes per cell than A549. The observed blocks to adenovirus gene expression and replication in all four human T-cell lines may contribute to the maintenance of naturally occurring persistent adenovirus infections in human T cells.  相似文献   

18.
19.
Bernt K  Liang M  Ye X  Ni S  Li ZY  Ye SL  Hu F  Lieber A 《Journal of virology》2002,76(21):10994-11002
We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application.  相似文献   

20.
Oncolytic adenovirus is capable of infecting, replicating in and lysing cancer cells. In adenovirus infection and replication, the wild type E1a gene (wE1a) mediates various genetic events to facilitate viral replication and exert antitumor effect. To enhance its antitumor efficacy and optimize its safety, we manipulated the wE1a gene and designed a 720-bp truncated minimal-E1a (mE1a) by deletions and mutations of amino acid residues. The mE1a gene was incorporated in an adenovirus under the control of hTERT promoter, giving the vector AdDC315-mE1a. A variety of cancer cell lines infected with the virus expressed the mE1a protein and showed considerable down-regulation in Neu protein expression as compared to normal cell lines. mE1a also had a lower binding affinity to the Rb protein, preserving the Rb tumor suppressive function. The mE1a expression allowed efficient adenovirus replication with high and stable replication ratios in cancer cells (about 125- to 8500-fold higher at 48 h and 180- to 10,900-fold higher at 96 h post-infection). Further, the mE1a-supported oncolytic adenovirus induced higher cancer cell apoptosis, stronger cell cycle arrest and more effective antitumor efficacy in hepatocarcinoma xenografts in nude mice. In conclusion, the truncated minimal mE1a can act as a tumor inhibitor gene, and may be used to construct oncolytic adenovirus vectors for use in gene therapy of a variety of cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号