首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within primary visual cortex (V1), brain‐derived neurotrophic factor (BDNF) signaling through its high‐affinity receptor TrkB is important for normal development and experience‐dependent plasticity. TrkB is expressed in several alternatively spliced isoforms, including full‐length TrkB (TrkB.FL), and several truncated isoforms (TrkB.T1, TrkB.T2, and TrkB.T4) that lack the intracellular tyrosine kinase domain. These isoforms are important components of BDNF signaling, yet little is known about the developmental or experience‐dependent regulation of their expression. Using immunohistochemistry, we found TrkB.FL and TrkB.T1 expressed in interneurons and pyramidal neurons within V1, but not in cortical astrocytes. We used real‐time PCR to quantify the changes in mRNA expression of BDNF, the four TrkB isoforms, and the low‐affinity receptor P75NTR during normal development, and in response to visual deprivation at two different ages. BDNF expression increased between postnatal days 10 (P10) and P30, and was rapidly down‐regulated by 3 days of visual deprivation during both the pre‐critical period (P14‐P17) and the critical period (P18‐P21). Over the same developmental period, expression of each TrkB isoform was regulated independently; TrkB.T1 increased, TrkB.FL and TrkB.T2 decreased, and TrkB.T4 showed transient changes. Neither brief visual deprivation nor prolonged dark‐rearing induced changes in either TrkB.FL or TrkB.T1 expression. However, TrkB.T4 expression was reduced by brief visual deprivation, whereas TrkB.T4, TrkB.T2 and P75NTR were up‐regulated by prolonged dark‐rearing into the critical period. Our data indicate that TrkB isoform expression can be selectively regulated by visual experience, and may contribute to experience‐dependent cortical plasticity. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

2.
Dendritic protrusions are highly motile during postnatal development. Although spine morphological plasticity could be associated with synaptic plasticity, the function of rapid spine/filopodial motility is still unknown. To investigate the role of spine motility in the development of the visual cortex and its relation with critical periods, we used two-photon imaging of neurons from layers receiving visual input in developing mouse primary visual cortex and compared motility between control and visually deprived animals. Spine and filopodia motility was prominent during early synaptogenesis (P11-P13) but greatly decreased after P15. This "switch" was coincident with a 2.5-fold increase in protrusion density and spine formation. Spine motility was not regulated during the critical period for monocular deprivation (P19-P34). Moreover, delaying the critical period by dark rearing did not delay the normal developmental decrease of spine motility, but caused a modest further reduction in motility at P28-P35. Dark rearing and enucleation also mildly reduced spine motility before eye opening and dark rearing reduced the proportion of filopodia. We conclude that (1) rapid spine motility is not related to critical period plasticity, but is likely to play a role in early synaptogenesis, and (2) neuronal activity stimulates spine motility during synaptogenesis and promotes the appearance of dendritic filopodia.  相似文献   

3.
Orientation selectivity of primary visual cortical neurons is an important requisite for shape perception. Although numerous studies have been previously devoted to a question of how orientation selectivity is established and elaborated in early life, how the susceptibility of orientation plasticity to visual experience changes in time remains unclear. In the present study, we showed a postnatal sensitive period profile for the modifiability of orientation selectivity in the visual cortex of kittens reared with head-mounted goggles for stable single-orientation exposure. When goggle rearing (GR) started at P16-P30, 2 weeks of GR induced a marked over-representation of the exposed orientation, and 2 more weeks of GR consolidated the altered orientation maps. GR that started later than P50, in turn, induced the under-representation of the exposed orientation. Orientation plasticity in the most sensitive period was markedly suppressed by cortical infusion of NMDAR antagonist. The present study reveals that the plasticity and consolidation of orientation selectivity in an early life are dynamically regulated in an experience-dependent manner.  相似文献   

4.
N Tian  D R Copenhagen 《Neuron》2001,32(3):439-449
Visual deprivation impedes refinement of neuronal function in higher visual centers of mammals. It is often assumed that visual deprivation has minimal effect, if any, on neuronal function in retina. Here we report that dark rearing reduces the light-evoked responsiveness of inner retinal neurons in young mice. We also find that 1 to 2 weeks after eye opening, there is a surge (>4-fold) in the frequency of spontaneous excitatory and inhibitory synaptic events in ganglion cells. Dark rearing reversibly suppresses this surge, but recovery takes >6 days. Frequency changes are not accompanied by amplitude changes, indicating that synaptic reorganization is likely to be presynaptic. These findings indicate there is a degree of activity-dependent plasticity in the mammalian retina that has not been previously described.  相似文献   

5.
It has been proposed that serotonin (5-HT) facilitates the chemosensory activity of the carotid body (CB). In the present study, we investigated mRNA expression and immunohistochemical localization of the 5-HT synthetic enzyme isoforms, tryptophan hydroxylase 1 (TPH1) and TPH2, and the 5-HT plasma membrane transport protein, 5-HT transporter (SERT), in the CB of the rat. RT-PCR analysis detected the expression of mRNA for TPH1 and SERT in extracts of the CB. Using immunohistochemistry, 5-HT immunoreactivity was observed in a few glomus cells. TPH1 and SERT immunoreactivities were observed in almost all glomus cells. SERT immunoreactivity was seen on nerve fibers with TPH1 immunoreactivity. SERT immunoreactivity was also observed in varicose nerve fibers immunoreactive for dopamine beta-hydroxylase, but not in nerve fibers immunoreactive for vesicular acetylcholine transporters or nerve terminals immunoreactive for P2X3 purinoreceptors. These results suggest that 5-HT is synthesized and released from glomus cells and sympathetic nerve fibers in the CB of the rat, and that the chemosensory activity of the CB is regulated by 5-HT from glomus cells and sympathetic nerve fibers.  相似文献   

6.
The N-methyl-D-aspartate receptor (NMDAR) is a key molecule mediating brain plasticity related processes. Knowing that alternative splicing of the NMDAR1 (NR1) subunit offers molecular diversity to NMDAR, controls the forward trafficking of the NR1 protein and is important for placing NMDA receptors at synapses, we investigated herein the postnatal developmental expression and the influence of visual deprivation on NR1 subunit splice variants in rat retina. Real-time PCR was performed using oligonucleotide primers specific for N- terminal (NR1a, NR1b) and C-terminal splice variants (NR1-1, NR1-2, NR1-3, NR1-4). The developmental profiles of mRNA expression levels of all NR1 isoforms peaked at the end of the third week. Dark rearing led to reductions in both N- and C-terminal NR1 variants in several developmental ages and a significant interaction between age and visual experience was observed for NR1a, NR1-2 and NR1-4 expression. Our results have demonstrated a developmental and visual experience-dependent regulation of NR1 splicing in rat retina.  相似文献   

7.
Neurochemical Research - An appropriate sensory experience during the early developmental period is important for brain maturation. Dark rearing during the visual critical period delays the...  相似文献   

8.
It was previously shown that a small lesion in the primary somatosensory cortex (S1) prevented both cortical plasticity and sensory learning in the adult mouse visual system: While 3-month-old control mice continued to show ocular dominance (OD) plasticity in their primary visual cortex (V1) after monocular deprivation (MD), age-matched mice with a small photothrombotically induced (PT) stroke lesion in S1, positioned at least 1 mm anterior to the anterior border of V1, no longer expressed OD-plasticity. In addition, in the S1-lesioned mice, neither the experience-dependent increase of the spatial frequency threshold (“visual acuity”) nor of the contrast threshold (“contrast sensitivity”) of the optomotor reflex through the open eye was present. To assess whether these plasticity impairments can also occur if a lesion is placed more distant from V1, we tested the effect of a PT-lesion in the secondary motor cortex (M2). We observed that mice with a small M2-lesion restricted to the superficial cortical layers no longer expressed an OD-shift towards the open eye after 7 days of MD in V1 of the lesioned hemisphere. Consistent with previous findings about the consequences of an S1-lesion, OD-plasticity in V1 of the nonlesioned hemisphere of the M2-lesioned mice was still present. In addition, the experience-dependent improvements of both visual acuity and contrast sensitivity of the open eye were severely reduced. In contrast, sham-lesioned mice displayed both an OD-shift and improvements of visual capabilities of their open eye. To summarize, our data indicate that even a very small lesion restricted to the superficial cortical layers and more than 3mm anterior to the anterior border of V1 compromised V1-plasticity and impaired learning-induced visual improvements in adult mice. Thus both plasticity phenomena cannot only depend on modality-specific and local nerve cell networks but are clearly influenced by long-range interactions even from distant brain regions.  相似文献   

9.
Enriched environment (EE) has been recently shown to affect visual cortex development and plasticity, and to prevent dark rearing effects. The factors mediating EE effects on visual cortical development and plasticity are still unclear. We have investigated whether IGF-1 is involved in mediating EE effects on the developing visual cortex. We show that EE increases the number of IGF-1 positive neurons in the visual cortex at P18. Increasing IGF-1 in the visual cortex of non-EE rats by means of osmotic minipumps implanted at P18 mimics EE effects, accelerating visual acuity development, assessed with Visual Evoked Potentials (VEPs). Blocking IGF-1 action in the visual cortex of EE rats by means of the IGF-1 receptor antagonist JB1 from P18 completely blocks EE action on visual acuity development. These results show that IGF-1 is a key factor mediating EE effects on visual cortical development. We then show that IGF-1 affects GAD65 immunoreactivity in perisomatic innervation and the condensation of Chondroitin Sulphate Proteoglycans (CSPGs) in perineuronal nets (PNNs) in the visual cortex. This suggests that IGF-1 action in mediating EE effects could be exerted through the modulation of intracortical inhibitory circuitry and PNN development.  相似文献   

10.
Loss of vision may enhance the capabilities of auditory perception, but the mechanisms mediating these changes remain elusive. Here, visual deprivation in rats resulted in altered oscillatory activities, which appeared to be the result of a common mechanism underlying neuronal assembly formation in visual and auditory centers. The power of high-frequency β and γ oscillations in V1 (the primary visual cortex) and β oscillations in the LGN (lateral geniculate nucleus) was increased after one week of visual deprivation. Meanwhile, the power of β oscillations in A1 (the primary auditory cortex) and the power of β and γ oscillations in the MGB (medial geniculate body) were also enhanced in the absence of visual input. Furthermore, nerve tracing revealed a bidirectional nerve fiber connection between V1 and A1 cortices, which might be involved in transmitting auditory information to the visual cortex, contributing to enhanced auditory perception after visual deprivation. These results may facilitate the better understanding of multisensory cross-modal plasticity.  相似文献   

11.
Perineuronal nets (PNNs) are extracellular matrix structures consisting of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R (Tn-R). They enwrap a subset of GABAergic inhibitory interneurons in the cerebral cortex and restrict experience-dependent cortical plasticity. While the expression profile of PNN components has been widely studied in many areas of the central nervous system of various animal species, it remains unclear how these components are expressed during the postnatal development of mouse primary visual cortex (V1). In the present study, we characterized the developmental time course of the formation of PNNs in the mouse primary visual cortex, using the specific antibodies against the two PNN component proteins aggrecan and tenascin-R, or the lectin Wisteria floribunda agglutinin (WFA) that directly binds to glycosaminoglycan chains of chondroitin sulfate proteoglycans (CSPGs). We found that the fluorescence staining signals of both the WFA staining and the antibody against aggrecan rapidly increased in cortical neurons across layers 2–6 during postnatal days (PD) 10–28 and reached a plateau around PD42, suggesting a full construction of PNNs by the end of the critical period. Co-staining with antibodies to Ca2 + binding protein parvalbumin (PV) demonstrated that the majority of PNN-surrounding cortical neurons are immunoreactive to PV. Similar expression profile of another PNN component tenascin-R was observed in the development of V1. Dark rearing of mice from birth significantly reduced the density of PNN-surrounding neurons. In addition, the expression of two recently identified CSPG receptors — Nogo receptor (NgR) and leukocyte common antigen-related phosphatase (LAR), showed significant increases from PD14 to PD70 in layer 2–6 of cortical PV-positive interneurons in normal reared mice, but decreased significantly in dark-reared ones. Taken together, these results suggest that PNNs form preferentially in cortical PV-positive interneurons in an experience-dependent manner, and reach full maturation around the end of the critical period of V1 development.  相似文献   

12.
The altered sensory experience of profound early onset deafness provokes sometimes large scale neural reorganisations. In particular, auditory-visual cross-modal plasticity occurs, wherein redundant auditory cortex becomes recruited to vision. However, the effect of human deafness on neural structures involved in visual processing prior to the visual cortex has never been investigated, either in humans or animals. We investigated neural changes at the retina and optic nerve head in profoundly deaf (N = 14) and hearing (N = 15) adults using Optical Coherence Tomography (OCT), an in-vivo light interference method of quantifying retinal micro-structure. We compared retinal changes with behavioural results from the same deaf and hearing adults, measuring sensitivity in the peripheral visual field using Goldmann perimetry. Deaf adults had significantly larger neural rim areas, within the optic nerve head in comparison to hearing controls suggesting greater retinal ganglion cell number. Deaf adults also demonstrated significantly larger visual field areas (indicating greater peripheral sensitivity) than controls. Furthermore, neural rim area was significantly correlated with visual field area in both deaf and hearing adults. Deaf adults also showed a significantly different pattern of retinal nerve fibre layer (RNFL) distribution compared to controls. Significant correlations between the depth of the RNFL at the inferior-nasal peripapillary retina and the corresponding far temporal and superior temporal visual field areas (sensitivity) were found. Our results show that cross-modal plasticity after early onset deafness may not be limited to the sensory cortices, noting specific retinal adaptations in early onset deaf adults which are significantly correlated with peripheral vision sensitivity.  相似文献   

13.
Perceptual learning has been used to probe the mechanisms of cortical plasticity in the adult brain. Feedback projections are ubiquitous in the cortex, but little is known about their role in cortical plasticity. Here we explore the hypothesis that learning visual orientation discrimination involves learning-dependent plasticity of top-down feedback inputs from higher cortical areas, serving a different function from plasticity due to changes in recurrent connections within a cortical area. In a Hodgkin-Huxley-based spiking neural network model of visual cortex, we show that modulation of feedback inputs to V1 from higher cortical areas results in shunting inhibition in V1 neurons, which changes the response properties of V1 neurons. The orientation selectivity of V1 neurons is enhanced without changing orientation preference, preserving the topographic organizations in V1. These results provide new insights to the mechanisms of plasticity in the adult brain, reconciling apparently inconsistent experiments and providing a new hypothesis for a functional role of the feedback connections.  相似文献   

14.

Background

It is generally assumed that visual cortical cells homogeneously shift their ocular dominance (OD) in response to monocular deprivation (MD), however little experimental evidence directly supports this notion. By using immunohistochemistry for the activity-dependent markers c-Fos and Arc, coupled with staining for markers of inhibitory cortical sub-populations, we studied whether long-term MD initiated at P21 differentially affects visual response of inhibitory neurons in rat binocular primary visual cortex.

Methodology/Principal Findings

The inhibitory markers GAD67, parvalbumin (PV), calbindin (CB) and calretinin (CR) were used. Visually activated Arc did not colocalize with PV and was discarded from further studies. MD decreased visually induced c-Fos activation in GAD67 and CR positive neurons. The CB population responded to MD with a decrease of CB expression, while PV cells did not show any effect of MD on c-Fos expression. The persistence of c-Fos expression induced by deprived eye stimulation in PV cells is not likely to be due to a particularly low threshold for activity-dependent c-Fos induction. Indeed, c-Fos induction by increasing concentrations of the GABAA antagonist picrotoxin in visual cortical slices was similar between PV cells and the other cortical neurons.

Conclusion

These data indicate that PV cells are particularly refractory to MD, suggesting that different cortical subpopulation may show different response to MD.  相似文献   

15.
Polysialic acid (PSA) is a unique carbohydrate composed of a linear homopolymer of α-2,8 linked sialic acid, and is mainly attached to the fifth immunoglobulin-like domain of the neural cell adhesion molecule (NCAM) in vertebrate neural system. In the brain, PSA is exclusively synthesized by the two polysialyltransferases ST8SiaII (also known as STX) and ST8SiaIV (also known as PST). By modulating adhesive property of NCAM, PSA plays a critical role in several neural development processes such as cell migration, neurite outgrowth, axon pathfinding, synaptogenesis and activity-dependent plasticity. The expression of PSA is temporally and spatially regulated during neural development and a tight regulation of PSA expression is essential to its biological function. In mouse visual cortex, PSA is downregulated following eye opening and its decrease allows the maturation of GABAergic synapses and the opening of the critical period for ocular dominance plasticity. Relatively little is known about how PSA levels are regulated by sensory experience and neuronal activity. Here, we demonstrate that while both ST8SiaII and ST8SiaIV mRNA levels decrease around the time of eye opening in mouse visual cortex, only ST8SiaII mRNA level reduction is regulated by sensory experience. Using an organotypic culture system from mouse visual cortex, we further show that ST8SiaII gene expression is regulated by spiking activity and NMDA-mediated excitation. Further, we show that both ST8SiaII and ST8SiaIV mRNA levels are positively regulated by PKC-mediated signaling. Therefore, sensory experience-dependent ST8SiaII gene expression regulates PSA levels in postnatal visual cortex, thus acting as molecular link between visual activity and PSA expression.  相似文献   

16.
Immunocytochemical techniques have been used to study neuropeptide Y (NPY) distribution in the human visual cortex (Brodman's areas 17, 18 and 19) NYP cell bodies belong mostly to inhibitory (multipolar and bitufted) but also to excitatory (bipolar and some pyramidal) neuronal types. Their distribution is similar in the three cortical areas studied: 20 to 40% of the NPY perikarya are located in the cortical gray matter, mostly in the deep layers, while the remaining 60 to 80% are located in the underlying white matter. Immunoreactive NPY processes form a rich network of intersecting fibers throughout the entire visual cortex. A superficial plexus (layers I and II) and a deep plexus (deep layer V and layer VI) of NPY fibers are present in areas 17, 18 and 19. In area 17, an additional well developed plexus is present in layers IVb and IVc. These plexuses receive branches from long parallel fibers arising from deep cortical layers or underlying white matter and terminating in superficial layers. Local or extrinsic NPY terminals wind around vessels in the cortex as well as in the white matter, and either penetrate them or form clusters of club endings on their walls. Our results suggest a role for NPY in human visual circuitry and in cortical blood flow regulation.  相似文献   

17.
In the fly Drosophila melanogaster, neuronal plasticity of synaptic terminals in the first optic neuropil, or lamina, depends on early visual experience within a critical period after eclosion [1]. The current study revealed two additional and parallel mechanisms involved in this type of synaptic terminal plasticity. First, an endogenous circadian rhythm causes daily oscillations in the volume of photoreceptor cell terminals. Second, daily visual experience precisely modulates the circadian time course and amplitude of the volume oscillations that the photoreceptor-cell terminals undergo. Both mechanisms are separable in their molecular basis. We suggest that the described neuronal plasticity in Drosophila ensures continuous optimal performance of the visual system over the course of a 24 h-day. Moreover, the sensory system of Drosophila cannot only account for predictable, but also for acute, environmental changes. The volumetric changes in the synaptic terminals of photoreceptor cells are accompanied by circadian and light-induced changes of presynaptic ribbons as well as extensions of epithelial glial cells into the photoreceptor terminals, suggesting that the architecture of the lamina is altered by both visual exposure and the circadian clock. Clock-mutant analysis and the rescue of PER protein rhythmicity exclusively in all R1-6 cells revealed that photoreceptor-cell plasticity is autonomous and sufficient to control visual behavior. The strength of a visually guided behavior, the optomotor turning response, co-varies with synaptic-terminal volume oscillations of photoreceptor cells when elicited at low light levels. Our results show that behaviorally relevant adaptive processing of visual information is performed, in part, at the level of visual input level.  相似文献   

18.
Feller MB 《Neuron》2003,39(1):3-4
Visual experience is known to induce developmental plasticity in visual cortex; now, Tian and Copenhagen report that experience regulates the development of retinal circuitry itself. Both pruning of retinal ganglion dendrites into ON or OFF sublamina and the emergence of pure ON versus OFF responses require visual experience.  相似文献   

19.
Gain modulation by nicotine in macaque v1   总被引:4,自引:0,他引:4  
Disney AA  Aoki C  Hawken MJ 《Neuron》2007,56(4):701-713
Acetylcholine is a ubiquitous cortical neuromodulator implicated in cognition. In order to understand the potential for acetylcholine to play a role in visual attention, we studied nicotinic acetylcholine receptor (nAChR) localization and function in area V1 of the macaque. We found nAChRs presynaptically at thalamic synapses onto excitatory, but not inhibitory, neurons in the primary thalamorecipient layer 4c. Furthermore, consistent with the release enhancement suggested by this localization, we discovered that nicotine increases responsiveness and lowers contrast threshold in layer 4c neurons. We also found that nAChRs are expressed by GABAergic interneurons in V1 but rarely by pyramidal neurons, and that nicotine suppresses visual responses outside layer 4c. All sensory systems incorporate gain control mechanisms, or processes which dynamically alter input/output relationships. We demonstrate that at the site of thalamic input to visual cortex, the effect of this nAChR-mediated gain is an enhancement of the detection of visual stimuli.  相似文献   

20.
Acetylcholine (ACh) contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1) that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs) in V1 of rats during a 4–8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine), nicotinic (mecamylamine), α7 (methyllycaconitine), and NMDA (CPP) receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56%) during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while α7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号