首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》2020,1861(10):148239
Cytochrome c Oxidase (CcO) is the terminal electron acceptor in aerobic respiratory chain, reducing O2 to water. The released free energy is stored by pumping protons through the protein, maintaining the transmembrane electrochemical gradient. Protons are held transiently in a proton loading site (PLS) that binds and releases protons driven by the electron transfer reaction cycle. Multi-Conformation Continuum Electrostatics (MCCE) was applied to crystal structures and Molecular Dynamics snapshots of the B-type Thermus thermophilus CcO. Six residues are identified as the PLS, binding and releasing protons as the charges on heme b and the binuclear center are changed: the heme a3 propionic acids, Asp287, Asp372, His376 and Glu126B. The unloaded state has one proton and the loaded state two protons on these six residues. Different input structures, modifying the PLS conformation, show different proton distributions and result in different proton pumping behaviors. One loaded and one unloaded protonation states have the loaded/unloaded states close in energy so the PLS binds and releases a proton through the reaction cycle. The alternative proton distributions have state energies too far apart to be shifted by the electron transfers so are locked in loaded or unloaded states. Here the protein can use active states to load and unload protons, but has nearby trapped states, which stabilize PLS protonation state, providing new ideas about the CcO proton pumping mechanism. The distance between the PLS residues Asp287 and His376 correlates with the energy difference between loaded and unloaded states.  相似文献   

2.
《BBA》2023,1864(2):148956
The crystal structure of bovine cytochrome c oxidase (CcO) shows a sodium ion (Na+) bound to the surface of subunit I. Changes in the absorption spectrum of heme a caused by calcium ions (Ca2+) are detected as small red shifts, and inhibition of enzymatic activity under low turnover conditions is observed by addition of Ca2+ in a competitive manner with Na+. In this study, we determined the crystal structure of Ca2+-bound bovine CcO in the oxidized and reduced states at 1.7 Å resolution. Although Ca2+ and Na+ bound to the same site of oxidized and reduced CcO, they led to different coordination geometries. Replacement of Na+ with Ca2+ caused a small structural change in the loop segments near the heme a propionate and formyl groups, resulting in spectral changes in heme a. Redox-coupled structural changes observed in the Ca2+-bound form were the same as those previously observed in the Na+-bound form, suggesting that binding of Ca2+ does not severely affect enzymatic function, which depends on these structural changes. The relation between the Ca2+ binding and the inhibitory effect during slow turnover, as well as the possible role of bound Ca2+ are discussed.  相似文献   

3.
The EPR signals of oxidized and partially reduced cytochrome oxidase have been studied at pH 6.4, 7.4, and 8.4. Isolated cytochrome oxidase in both non-ionic detergent solution and in phospholipid vesicles has been used in reductive titrations with ferrocytochrome c.The g values of the low- and high-field parts of the low-spin heme signal in oxidized cytochrome oxidase are shown to be pH dependent. In reductive titrations, low-spin heme signals at g 2.6 as well as rhombic and nearly axial high-spin heme signals are found at pH 8.4, while the only heme signals appearing at pH 6.4 are two nearly axial g 6 signals. This pH dependence is shifted in the vesicles.The g 2.6 signals formed in titrations with ferrocytochrome c at pH 8.4 correspond maximally to 0.25–0.35 heme per functional unit (aa3) of cytochrome oxidase in detergent solution and to 0.22 heme in vesicle oxidase. The total amount of high-spin heme signals at g 6 found in partially reduced enzyme is 0.45–0.6 at pH 6.4 and 0.1–0.2 at pH 8.4. In titrations of cytochrome oxidase in detergent solution the g 1.45 and g 2 signals disappear with fewer equivalents of ferrocytochrome c added at pH 8.4 compared to pH 6.4.The results indicate that the environment of the hemes varies with the pH. One change is interpreted as cytochrome a3 being converted from a high-spin to a low-spin form when the pH is increased. Possibly this transition is related to a change of a liganded H2O to OH? with a concomitant decrease of the redox potential. Oxidase in phosphatidylcholine vesicles is found to behave as if it experiences a pH, one unit lower than that of the medium.  相似文献   

4.
Sulfide is both an inhibitor and a slow reductant of oxidized cytochrome c oxidase. When the enzyme is exposed to sulfide for short times (one minute or less) and frozen, the resultant electron paramagnetic resonance (EPR) signals show clearly: low spin heme a, low spin heme a3, the usual “EPR detectable” Cu2+ signal (g = 2.17, g = 2.03), and a new Cu2+ signal superimposed on the same region, with (g ~ 2.19, g = 2.05). This new signal presumably arises because the antiferromagnetic coupling postulated to exist between the iron atom of heme a3 and this copper is disrupted when heme a3 is driven to a low spin state by sulfide. The implications of this result with respect to models of the O2-binding site and redox geometry of oxidase are briefly discussed.  相似文献   

5.
Cytochrome c oxidase is a member of the heme-copper family of oxygen reductases in which electron transfer is linked to the pumping of protons across the membrane. Neither the redox center(s) associated with proton pumping nor the pumping mechanism presumably common to all heme-copper oxidases has been established. A possible conformational coupling between the catalytic center (Fea33+–CuB2+) and a protein site has been identified earlier from ligand binding studies, whereas a structural change initiated by azide binding to the protein has been proposed to facilitate the access of cyanide to the catalytic center of the oxidized bovine enzyme. Here we show that cytochrome oxidase pretreated with a low concentration of azide exhibits a significant increase in the apparent rate of cyanide binding relative to that of free enzyme. However, this increase in rate does not reflect a conformational change enhancing the rapid formation of a Fea33+–CN–CuB2+ complex. Instead the cyanide-induced transition of a preformed Fea33+–N3–CuB2+ to the ternary complex of Fea33+–N3 CuB2+–CN is the most likely reason for the observed acceleration. Significantly, the slow rate of azide release from the ternary complex indicates that cyanide ligated to CuB blocks a channel between the catalytic site and the solvent. The results suggest that there is a pathway that originates at CuB and that, during catalysis, ligands present at this copper center control access to the iron of heme a3 from the bulk medium.  相似文献   

6.
The electron paramagnetic resonance (epr) properties of cytochrome c oxidase have been examined with special attention to the effect of added ligands and of interactions between the redox components. The fully oxidized preparations have a very small g6 signal which increases greatly as the redox potential is made more negative, a process exactly paralleling the disappearance of the g3 signal. The potential for half appearance or disappearance (Em), respectively, is 380 mV at pH 7.0 and 300 mV at pH 8.5. This identifies the changes as accompanying reduction of cytochrome a3 because the Em of the “invisible copper” is 340 mV and pH independent. Nitric oxide (NO) binds reduced cytochrome a3 to form a paramagnetic species. This resulting epr signal is strongly dependent on the redox state of cytochrome a, another expression of heme-heme interaction in cytochrome oxidase. The NO compound is also unique in that under the appropriate conditions three of the four redox components (cytochrome a3, cytochrome a, and the “visible” copper) are epr active. In potentiometric titrations in the presence of azide the formation of the azide compound responsible for the g2.9 signal appears to require reduction of both cytochrome a3 and the “invisible copper.” An internal sulfur compound is present which, at alkaline pH values, can bind the heme responsible for the g6 signal and change it to a low-spin sulfur compound with a signal at approximately g2.6. Evidence is also presented for the cytochrome c oxidase in situ being an equilibrium mixture of two different conformational states.  相似文献   

7.
The dioxygen reduction mechanism in cytochrome oxidases relies on proton control of the electron transfer events that drive the process. Proton delivery and proton channels in the protein that are relevant to substrate reduction and proton pumping are considered, and the current status of this area is summarized. We propose a mechanism in which the coupling of the oxygen reduction chemistry to proton translocation (P  F transition) is related to the properties of two groups of highly conserved residues, namely, His411/G386-T389 and the heme a3–propionateA–D399–H403 chain. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

8.
Mammalian cytochrome c oxidase (CcO) reduces O2 to water in a bimetallic site including Fea3 and CuB giving intermediate molecules, termed A-, P-, F-, O-, E-, and R-forms. From the P-form on, each reaction step is driven by single-electron donations from cytochrome c coupled with the pumping of a single proton through the H-pathway, a proton-conducting pathway composed of a hydrogen-bond network and a water channel. The proton-gradient formed is utilized for ATP production by F-ATPase. For elucidation of the proton pumping mechanism, crystal structural determination of these intermediate forms is necessary. Here we report X-ray crystallographic analysis at ∼1.8 Å resolution of fully reduced CcO crystals treated with O2 for three different time periods. Our disentanglement of intermediate forms from crystals that were composed of multiple forms determined that these three crystallographic data sets contained ∼45% of the O-form structure, ∼45% of the E-form structure, and ∼20% of an oxymyoglobin-type structure consistent with the A-form, respectively. The O- and E-forms exhibit an unusually long CuB2+-OH distance and CuB1+-H2O structure keeping Fea33+-OH state, respectively, suggesting that the O- and E-forms have high electron affinities that cause the O→E and E→R transitions to be essentially irreversible and thus enable tightly coupled proton pumping. The water channel of the H-pathway is closed in the O- and E-forms and partially open in the R-form. These structures, together with those of the recently reported P- and F-forms, indicate that closure of the H-pathway water channel avoids back-leaking of protons for facilitating the effective proton pumping.  相似文献   

9.
Parul D  Palmer G  Fabian M 《Biochemistry》2005,44(11):4562-4571
Three forms of cytochrome c oxidase, fully oxidized CcO (CcO-O), oxidized CcO complexed with cyanide (CcO.CN), and mixed valence CcO, in which both heme a(3) and Cu(B) are reduced and stabilized by carbon monoxide (MV.CO), were investigated by optical spectroscopy, MCD, and stopped-flow for the pH sensitivity of spectral features. In the pH range between pH 5.7 and 9.0, both heme a and heme a(3) in CcO-O interact with a single protolytic group. From the variation of the position of the Soret peak with changes in pH, a pK(a) of 6.6 +/- 0.2 was determined for this group. The pH sensitivity of heme a(3) is lost in the CcO.CN complex, and only heme a responds to pH changes. In MV.CO the spectra of both hemes are almost independent of pH between 5.7 and 11.0. The stoichiometry of proton uptake in the conversion of CcO-O both to MV.CO and to fully reduced CcO was determined between pH 5.8 and pH 8.2. Formation of MV.CO from CcO-O was accompanied by the uptake of approximately two protons, and this value was almost independent of pH. Full reduction of oxidized CcO was associated with the uptake of approximately 2 H(+) at basic pH, and this value increases with decreasing pH. On the basis of these proton uptake measurements, it is concluded that the pK(a) of the group is independent of the redox state of CcO. It is suggested that Glu60 of subunit II, located at the entrance of the proton conducting K-channel, is the protolytic residue that interacts with both hemes through a hydrogen-bonding network.  相似文献   

10.
R. Boelens  H. Rademaker  R. Pel  R. Wever 《BBA》1982,679(1):84-94
Three complexes of NO with cytochrome c oxidase are described which are all photodissociable at low temperatures as measured by EPR. The EPR parameters of the cytochrome a2+3-NO complex are the same both in the fully reduced enzyme and in the mixed-valence enzyme. The kinetics of photodissociation of cytochrome a2+3-NO and recombination of NO with cytochrome a2+3 (in the 30–70 K region) revealed no differences in structure between cytochrome a2+3 in the fully reduced and the mixed-valence states. The action spectrum of the photodissociation of cytochrome a2+3-NO as measured by EPR has maxima at 595, 560 and 430 nm, and corresponds to the absorbance spectrum of cytochrome a2+3-NO. Photodissociation of cytochrome a2+3-NO in the mixed-valence enzyme changes the EPR intensity at g 3.03, due to electron transfer from cytochrome a2+3 to cytochrome a3+. The extent of electron transfer was found to be temperature dependent. This suggests that a conformational change is coupled to this electron transfer. The complex of NO with oxidized cytochrome c oxidase shows a photodissociation reaction and recombination of NO (in the 20–40 K region) which differ completely from those observed in cytochrome a2+3-NO. The observed recombination occurs at a temperature 15 K lower than that found for the cytochrome a2+3-NO complex. The action spectrum of the oxidized complex shows a novel spectrum with maxima at 640 and below 400 nm; it is assigned to a Cu2+B-NO compound. The triplet species with Δms = 2 EPR signals at g 4 and Δms = 1 signals at g 2.69 and 1.67, that is observed in partially reduced cytochrome c oxidase treated with azide and NO, can also be photodissociated.  相似文献   

11.
12.
Identification of the intermediates and determination of their structures in the reduction of dioxygen to water by cytochrome c oxidase (CcO) are particularly important to understanding both O2 activation and proton pumping by the enzyme. In this work, we report the products of the rapid reaction of O2 with the mixed valence form (CuA2+, heme a3+, heme a32+-CuB1+) of the enzyme. The resonance Raman results show the formation of two ferryl-oxo species with characteristic Fe(IV)=O stretching modes at 790 and 804 cm−1 at the peroxy oxidation level (PM). Density functional theory calculations show that the protein environment of the proximal H-bonded His-411 determines the strength of the distal Fe(IV)=O bond. In contrast to previous proposals, the PM intermediate is also formed in the reaction of Y167F with O2. These results suggest that in the fully reduced enzyme, the proton pumping νFe(IV)=O = 804 cm−1 to νFe(IV)=O = 790 cm−1 transition (P→F, where P is peroxy and F is ferryl) is triggered not only by electron transfer from heme a to heme a3 but also by the formation of the H-bonded form of the His-411-Fe(IV)=O conformer in the proximal site of heme a3. The implications of these results with respect to the role of an O=Fe(IV)-His-411-H-bonded form to the ring A propionate of heme a3-Asp-399-H2O site and, thus, to the exit/output proton channel (H2O) pool during the proton pumping P→F transition are discussed. We propose that the environment proximal to the heme a3 controls the spectroscopic properties of the ferryl intermediates in cytochrome oxidases.  相似文献   

13.
Krithika Ganesan  Robert B. Gennis 《BBA》2010,1797(6-7):619-624
The K-pathway is one of the two proton-input channels required for function of cytochrome c oxidase. In the Rhodobacter sphaeroides cytochrome c oxidase, the K-channel starts at Glu101 in subunit II, which is at the surface of the protein exposed to the cytoplasm, and runs to Tyr288 at the heme a3/CuB active site. Mutations of conserved, polar residues within the K-channel block or inhibit steady state oxidase activity. A large body of research has demonstrated that the K-channel is required to fully reduce the heme/Cu binuclear center, prior to the reaction with O2, presumably by providing protons to stabilize the reduced metals (ferrous heme a3 and cuprous CuB). However, there are conflicting reports which raise questions about whether blocking the K-channel blocks both electrons or only one electron from reaching the heme/Cu center. In the current work, the rate and extent of the anaerobic reduction of the heme/Cu center were monitored by optical and EPR spectroscopies, comparing the wild type and mutants that block the K-channel. The new data show that when the K-channel is blocked, one electron will still readily enter the binuclear center. The one-electron reduction of the resting oxidized (“O”) heme/Cu center of the K362M mutant, results in a partially reduced binuclear center in which the electron is distributed about evenly between heme a3 and CuB in the R. sphaeroides oxidase. Complete reduction of the heme/Cu center requires the uptake of two protons which must be delivered through the K-channel.  相似文献   

14.
Cytochrome c Oxidase (CcO) reduces O2, the terminal electron acceptor, to water in the aerobic, respiratory electron transport chain. The energy released by O2 reductions is stored by removing eight protons from the high pH, N-side, of the membrane with four used for chemistry in the active site and four pumped to the low pH, P-side. The proton transfers must occur along controllable proton pathways that prevent energy dissipating movement towards the N-side. The CcO N-side has well established D- and K-channels to deliver protons to the protein interior. The P-side has a buried core of hydrogen-bonded protonatable residues designated the Proton Loading Site cluster (PLS cluster) and many protonatable residues on the P-side surface, providing no obvious unique exit. Hydrogen bond pathways were identified in Molecular Dynamics (MD) trajectories of Rb. sphaeroides CcO prepared in the PR state with the heme a3 propionate and Glu286 in different protonation states. Grand Canonical Monte Carlo sampling of water locations, polar proton positions and residue protonation states in trajectory snapshots identify a limited number of water mediated, proton paths from PLS cluster to the surface via a (P-exit) cluster of residues. Key P-exit residues include His93, Ser168, Thr100 and Asn96. The hydrogen bonds between PLS cluster and P-exit clusters are mediated by a water wire in a cavity centered near Thr100, whose hydration can be interrupted by a hydrophobic pair, Leu255B (near CuA) and Ile99. Connections between the D channel and PLS via Glu286 are controlled by a second, variably hydrated cavity.

Significance statement

Cytochrome C oxidase plays a crucial role in cellular respiration and energy generation. It reduces O2 to water and uses the released free energy to move protons across mitochondrial and bacterial cell membranes adding to the essential electrochemical gradient. Energy storage requires that protons are taken up from the high pH, N-side and released to the low pH, P-side of the membrane. We identify a potential proton exit from a buried cluster of polar residues (the proton loading site) to the P-side of CcO via paths made up of waters and conserved residues. Two water cavities connect the proton exit pathway to the surface only when hydrated. Changing the degree of hydration may control otherwise energetically favorable proton backflow from the P-side.  相似文献   

15.
Cooperative linkage of solute binding at separate binding sites in allosteric proteins is an important functional attribute of soluble and membrane bound hemoproteins. Analysis of proton/electron coupling at the four redox centers, i.e. Cu(A), heme a, heme a(3) and Cu(B), in the purified bovine cytochrome c oxidase in the unliganded, CO-liganded and CN-liganded states is presented. These studies are based on direct measurement of scalar proton translocation associated with oxido-reduction of the metal centers and pH dependence of the midpoint potential of the redox centers. Heme a (and Cu(A)) exhibits a cooperative proton/electron linkage (Bohr effect). Bohr effect seems also to be associated with the oxygen-reduction chemistry at the heme a(3)-Cu(B) binuclear center. Data on electron transfer in cytochrome c oxidase are also presented, which, together with structural data, provide evidence showing the occurrence of direct electron transfer from Cu(A) to the binuclear center in addition to electron transfer via heme a. A survey of structural and functional data showing the essential role of cooperative proton/electron linkage at heme a in the proton pump of cytochrome c oxidase is presented. On the basis of this and related functional and structural information, variants for cooperative mechanisms in the proton pump of the oxidase are examined.  相似文献   

16.
Lukas Stiburek  Jiri Zeman 《BBA》2010,1797(6-7):1149-1158
Eukaryotic cytochrome c oxidase (CcO), the terminal enzyme of the energy-transducing mitochondrial electron transport chain is a hetero-oligomeric, heme–copper oxidase complex composed of both mitochondrially and nuclear-encoded subunits. It is embedded in the inner mitochondrial membrane where it couples the transfer of electrons from reduced cytochrome c to molecular oxygen with vectorial proton translocation across the membrane. The biogenesis of CcO is a complicated sequential process that requires numerous specific accessory proteins, so-called assembly factors, which include translational activators, translocases, molecular chaperones, copper metallochaperones and heme a biosynthetic enzymes. Besides these CcO-specific protein factors, the correct biogenesis of CcO requires an even greater number of proteins with much broader substrate specificities. Indeed, growing evidence indicates that mitochondrial ATP-dependent proteases might play an important role in CcO biogenesis. Out of the four identified energy-dependent mitochondrial proteases, three were shown to be directly involved in proteolysis of CcO subunits. In addition to their well-established protein-quality control function these oligomeric proteolytic complexes with chaperone-like activities may function as molecular chaperones promoting productive folding and assembly of subunit proteins. In this review, we summarize the current knowledge of the functional involvement of eukaryotic CcO-specific assembly factors and highlight the possible significance for CcO biogenesis of mitochondrial ATP-dependent proteases.  相似文献   

17.
In cytochrome c oxidase (CcO), exergonic electron transfer reactions from cytochrome c to oxygen drive proton pumping across the membrane. Elucidation of the proton pumping mechanism requires identification of the molecular components involved in the proton transfer reactions and investigation of the coupling between internal electron and proton transfer reactions in CcO. While the proton-input trajectory in CcO is relatively well characterized, the components of the output pathway have not been identified in detail. In this study, we have investigated the pH dependence of electron transfer reactions that are linked to proton translocation in a structural variant of CcO in which Arg481, which interacts with the heme D-ring propionates in a proposed proton output pathway, was replaced with Lys (RK481 CcO). The results show that in RK481 CcO the midpoint potentials of hemes a and a(3) were lowered by approximately 40 and approximately 15 mV, respectively, which stabilizes the reduced state of Cu(A) during reaction of the reduced CcO with O(2). In addition, while the pH dependence of the F --> O rate in wild-type CcO is determined by the protonation state of two protonatable groups with pK(a) values of 6.3 and 9.4, only the high-pK(a) group influences this rate in RK481 CcO. The results indicate that the protonation state of the Arg481 heme a(3) D-ring propionate cluster having a pK(a) of approximately 6.3 modulates the rate of internal electron transfer and may act as an acceptor of pumped protons.  相似文献   

18.
The reaction of oxidized bovine heart cytochrome c oxidase (CcO) with one equivalent of hydrogen peroxide results in the formation of two spectrally distinct species. The yield of these two forms is controlled by the ionization of a group with a pK(a) of 6.6. At basic pH, where this group is deprotonated, an intermediate called P dominates (P, because it was initially believed to be a peroxy compound). At acidic pH where the group is protonated, a different species, called F (ferryl intermediate) is obtained. We previously proposed that the only difference between these two species is the presence of one proton in the catalytic center of F that is absent in P. It is now suggested that the catalytic center of this F form has the same redox and protonation state as a second ferryl intermediate produced at basic pH by two equivalents of hydrogen peroxide; the role of the second equivalent of H(2)O(2) is that of a proton donor in the conversion of P to F. Two chloride-binding sites have been detected in oxidized CcO. One site is located at the binuclear center; the second site was identified from the sensitivity of g=3 signal of cytochrome a to chloride in the EPR spectra of oxidized CcO. Turnover of CcO releases chloride from the catalytic center into the medium probably by one of the hydrophobic channels, proposed for oxygen access, with an orientation parallel to the membrane plane. Chloride in the binuclear center is most likely not involved in CcO catalysis. The influence of the second chloride site upon several reactions of CcO has been assessed. No correlation was found between chloride binding to the second site and the reactions that were examined.  相似文献   

19.
Jiancong Xu 《BBA》2008,1777(2):196-201
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.  相似文献   

20.
《Biophysical journal》2021,120(17):3807-3819
Hemoglobin-mediated transport of dioxygen (O2) critically depends on the stability of the reduced (Fe2+) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe3+) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe3+) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λsolv 73–96%) makes major contributions to reorganization free energy, whereas protein reorganization (λprot) accounts for 27–30% except for the Miyagi and J-Buda variants (λprot ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe2+ state. Semiclassical Marcus ET theory-based calculations predict experimental kET for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号