首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of electric field-induced ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water (BPW) (pH 7.2) and apple juice (pH 3.5; 11.8 °Brix) was investigated in this study. BPW and apple juice were treated at different temperatures (55°C, 58°C, and 60°C) and for different times (0, 10, 20, 25, and 30 s) by ohmic heating compared with conventional heating. The electric field strength was fixed at 30 V/cm and 60 V/cm for BPW and apple juice, respectively. Bacterial reduction resulting from ohmic heating was significantly different (P < 0.05) from that resulting from conventional heating at 58°C and 60°C in BPW and at 55°C, 58°C, and 60°C in apple juice for intervals of 0, 10, 20, 25, and 30 s. These results show that electric field-induced ohmic heating led to additional bacterial inactivation at sublethal temperatures. Transmission electron microscopy (TEM) observations and the propidium iodide (PI) uptake test were conducted after treatment at 60°C for 0, 10, 20, 25 and 30 s in BPW to observe the effects on cell permeability due to electroporation-caused cell damage. PI values when ohmic and conventional heating were compared were significantly different (P < 0.05), and these differences increased with increasing levels of inactivation of three food-borne pathogens. These results demonstrate that ohmic heating can more effectively reduce bacterial populations at reduced temperatures and shorter time intervals, especially in acidic fruit juices such as apple juice. Therefore, loss of quality can be minimized in a pasteurization process incorporating ohmic heating.  相似文献   

2.
A technique was developed for measuring the length of stylet insertion during adult whitefly probing. The distance that the labium shortens during a probe was shown to be equal to the length of stylets that were inserted into the plant tissue. The length of labial shortening then was measured in high-magnification video recordings of adult female silverleaf whitefly, Bemisia argentifolii, in conjunction with recording electrical penetration graphs (EPGs – AC method). Using a split-screen device, video images of the whitefly's labium during a probe and the EPG waveforms produced during the probe were recorded simultaneously on the same video tape. On playback, changes in labial length could be measured during specific EPG waveforms to determine the length of stylet insertion that occurred during the waveforms. The focus of the study was on two characteristics of the pathway phase sawtooth waveform: the frequency of voltage peaks and the increase in voltage level that occurs over time during sawtooth waveforms. The rate of stylet penetration was significantly and positively correlated with frequency of sawtooth waveform voltage peaks (r 2=0.33) and the length of stylet penetration was significantly and positively correlated (second-order polynomial) with the relative difference in voltage level between the beginning and end of the sawtooth waveform (r 2=0.43). Stylet advancement did not appear to occur during the few low-flat waveforms (unknown behavioral correlation) and high-flat waveforms (phloem phase) that were observed. Voltage drops occur sporadically during sawtooth waveforms, and these were associated with partial stylet withdrawal (indicated when the labium increased in length, but the probe was not terminated) with an accuracy of 99%.  相似文献   

3.
In the present study, alternative potential stimulation with rectangular pulse, sine and triangular waveforms at 10 and 100Hz was applied to cells cultured on an ITO electrode. As a result, we found that the alternating potential waveform dependence induced by the frequency on membrane damage of cells cultured on an electrode surface. The cell membrane damage was promoted by a rectangular pulse wave in comparison with sine and triangular waves, when alternating electrical potentials of 0 to +1.0V at 100Hz were loaded. In contrast, this waveform dependence was not observed when the frequency was 10Hz. Furthermore, it was found that cell membrane damage was induced at positive potentials more than +0.8V under the present experimental conditions.  相似文献   

4.
High-frequency chest compression (HFCC) therapy has become the prevailing form of airway clearance for patients with cystic fibrosis (CF) in the United States. The original square waveform was replaced in 1995 with a sine waveform without published evidence of an equality of effectiveness. The recent development of a triangle waveform for HFCC provided the opportunity to compare the functional and therapeutic effects of different waveforms. Clinical testing was done in patients at home with therapy times recorded with all sputum collected in preweighed sealable vials. The eight study patients with CF were regular users of a sine waveform device. They produced sputum consistently and were clinically stable. They used their optimum frequencies for therapy for each waveform and, for one week for each waveform, collected all sputum during their twice-daily timed HFCC therapies. After collection, these vials were reweighed, desiccated, and reweighed to calculate wet and dry weights of sputum per minute of therapy time. Frequency associated vest pressures transmitted to the mouth, and induced airflows at the mouth were measured in healthy volunteers. The pressure waveforms produced in the vest were, in shape, faithfully demonstrable at the mouth. In the healthy subject the transmission occurred in 2 ms and was attenuated to about 75% of the vest pressure for the triangle waveform and 60% for the sine waveform. All patients produced more sputum with the triangle waveform than with the sine waveform. The mean increase was 20%+ range of 4% to 41%. P value was <.001. Future studies of HFCC should investigate the other effects of the sine and triangle waveforms, as well as the neglected square waveform, on mucus clearance and determine the best frequencies for each waveform, disease, and patient.  相似文献   

5.
In this study, a new mechanical stimulator using the piezoelectric actuator was developed to give cultured bone cells mechanical strains with more physiologic magnitude, frequency components, and waveform. This stimulator provides bone cells in a three-dimensional collagen gel block culture mechanical strains with magnitude of 200-40,000 microstrain and frequency of DC-100 Hz, which sufficiently covers physiological strains on bone. Furthermore, the stimulator can generate not only common strain waveforms like sine and rectangular waves, but also arbitrary strain waveforms synthesized on a personal computer. In particular, the controllability of strain frequency and waveform is an advance over that of previous stimulators. Thus, this device can facilitate new findings regarding bone cell responses to mechanical stimuli.  相似文献   

6.
Human promyelocytic leukaemia HL-60 cells which have been differentiated by DMSO to granulocytes were used to investigate the effect of different waveforms on the release of interleukine-8 (IL-8). The cells were prestimulated with 100 pM fMLP and subsequently treated for 15 min with different electrical fields and currents. Three hours later the release of IL-8 into the medium was determined by ELISA. Varying the frequency of the sinusoidal electrical current between 0 and 20 Hz resulted in 2 maxima of IL-8 release at 5 and 13 Hz. Prestimulated cells were treated with sine-, triangular-, and rectangular-waveforms at 5 Hz in the current intensity range of 0-3 mA/cm(2). For the three waveforms tested, the IL-8 release was enhanced 1.5 fold. Treatment of the cells with capacitively coupled electric fields of 5 Hz using field strengths between 0 and 10 V(eff)/cm had no effect on the release of IL-8. In comparison to the positive results after sine wave exposure alone, an exposure with sine wave current to which noise had been superimposed had no effect on the HL-60 cells. From these investigations it can be concluded that for electrical current treatment of prestimulated HL-60 cells the release of IL-8 does not depend on the waveform if the waveform information is not destroyed by superimposed noise.  相似文献   

7.
Some effects of extremely low frequency electromagnetic fields (ELF-EMFs) on human spermatozoa are reported. Significant increases in the values of the motility and of the other kinematic parameters have been observed when spermatozoa were exposed to an ELF-EMF with a square waveform of 5 mT amplitude and frequency of 50 Hz. By contrast, a 5 mT sine wave (50 Hz) and a 2.5 mT square wave (50 Hz) exposure did not produce any significant effect on sperm motility. The effects induced by ELF-EMF (50 Hz; 5 mT) during the first 3 h of exposure persisted for 21 h after the end of the treatment. These results indicate that ELF-EMF exposure can improve spermatozoa motility and that this effect depends on the field characteristics.  相似文献   

8.
Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20–20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies <1,000 Hz. Biofilms vibrated without sub-MIC tobramycin showed a significantly reduced metabolism compared to untreated controls (p < 0.05). Biofilms treated with tobramycin and vibrated simultaneously (450, 530, 610, and 650 Hz), or vibrated (450 and 650 Hz) then treated with tobramycin subsequently, or vibrated (610Hz, 650Hz) after 3 h of tobramycin treatment showed significantly lower metabolism compared to P. aeruginosa biofilm treated with tobramycin alone (p < 0.05). CLSM imaging further confirmed these findings. Low frequency vibrations assisted tobramycin in killing P. aeruginosa biofilms at sub-MIC. Thus, sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.KEY WORDS: alginate, biofilm, Pseudomonas, tobramycin, vibration  相似文献   

9.
The propagation of vibrations along the trunk and branches of a manuka tree, generated in response to the impact of a steel ball-bearing on the trunk, was measured with an accelerometer. The impact generated bending waves which travelled along the trunk and into the branches. Close to the point of impact the waveform was dominated by a damped oscillation at 518 Hz; as the bending wave progressed away from the point of impact the frequency of the dominant waveform increased. Beyond 200 cm the waveform became increasingly complex and a smallamplitude, high-frequency component progressively preceded the main wave. Branching points also induced complex waveforms, particularly where branches lay at a large angle to the trunk. Stridulating wetas also generated bending waves in the tree at a frequency close to that generated by the ball-bearing, as well as at a higher frequency of 7.5 kHz. The acoustic frequency of stridulation peaked at 0.8 and 3.4 kHz. Records from nerves serving the vibration-sensitive subgenual organs showed that wetas can detect oscillations at 1 kHz at 0.015ms-2. A stridulating weta placed on the same log as a preparation in which the nerve from the subgenual organ was monitored generated oscillatins well above the threshold for detection.  相似文献   

10.
We systematically determined which spectrotemporal modulations in speech are necessary for comprehension by human listeners. Speech comprehension has been shown to be robust to spectral and temporal degradations, but the specific relevance of particular degradations is arguable due to the complexity of the joint spectral and temporal information in the speech signal. We applied a novel modulation filtering technique to recorded sentences to restrict acoustic information quantitatively and to obtain a joint spectrotemporal modulation transfer function for speech comprehension, the speech MTF. For American English, the speech MTF showed the criticality of low modulation frequencies in both time and frequency. Comprehension was significantly impaired when temporal modulations <12 Hz or spectral modulations <4 cycles/kHz were removed. More specifically, the MTF was bandpass in temporal modulations and low-pass in spectral modulations: temporal modulations from 1 to 7 Hz and spectral modulations <1 cycles/kHz were the most important. We evaluated the importance of spectrotemporal modulations for vocal gender identification and found a different region of interest: removing spectral modulations between 3 and 7 cycles/kHz significantly increases gender misidentifications of female speakers. The determination of the speech MTF furnishes an additional method for producing speech signals with reduced bandwidth but high intelligibility. Such compression could be used for audio applications such as file compression or noise removal and for clinical applications such as signal processing for cochlear implants.  相似文献   

11.
The effects of acoustic and visual stimuli and their synergistic effects on heart rate variability including gender differences were investigated. Of particular interest was the influence of visual stimulus on heart rate variability during listening to simple sounds of different characters. Twelve male and 12 female university students were selected as subjects. The subjects listened at rest to 7 different figures of sound at loudness levels averaging 60 dB. Beat-to-beat R-R intervals were continuously recorded under the closed-eye condition (CEC) and the open-eye condition (OEC) prior to, during, and immediately after the exposure to acoustic stimuli. Low frequency (LF) power was defined over 0.04-0.15 Hz and high frequency (HF) power over 0.15-0.40 Hz. Cardiac autonomic function was estimated by plotting LF/HF in standard measure against HF in standard measure and by plotting LF/HF (%) against HF (%), accompanied by a demarcated central area. Values of LF/HF tended to be smaller under CEC than under OEC. Values of HF while listening to a 110 Hz sine wave under CEC were significantly greater than values for 880 Hz and 3520 Hz sine waves, or for 110 Hz or 880 Hz sawtooth waves, under OEC. Under CEC, values of HF for 7 figures of sound were greater in females than in males. The value of HF of sine wave for 110 Hz under CEC and OEC was significantly greater than that for white noise under the OEC. The results suggest that the cardiac parasympathetic nervous activity during auditory excitation increases with elimination of visual stimuli and tends to be greater in females than in males.  相似文献   

12.
Bacillus subtilis spores were suspended in 0.1% NaCl solution (ca. 10(7) CFU/mL) and treated by conventional or ohmic heating under identical temperature histories. Temperatures tested were in the range of 88 to 99 degrees C. Survival curves and calculated D values showed significantly higher lethality for spores by ohmic than conventional heating. The z or Ea values corresponding to the two heating methods, however, were not significantly different. Spores of B. subtilis were suspended in nutrient broth and treated with conventional and ohmic heating through a single- or a double-stage treatment. In case of double-stage treatment, heating was interrupted by a 20 min of incubation at 37 degrees C to induce a Tyndallization effect. Spore inactivation during double-stage treatment was greater for ohmic than conventional heating. The enhanced spore inactivation by ohmic, compared with conventional, heating resulted from a greater rate of spore death during the first stage of heating and greater decrease in count of viable spores immediately after the incubation period that intervened the heating process. Thus it is concluded that spore inactivation during ohmic heating was primarily due to the thermal effect but there was an additional killing effect caused by the electric current.  相似文献   

13.
The present study aimed to evaluate the effectiveness of low-frequency ultrasounds applied to eliminate Campylobacter spp. from water. The strains used in this research were isolated from water contaminated with sewage. Campylobacter coli alone was detected in the samples and used for further research. The reference strain C. coli ATCC 33559 was simultaneously tested. The isolate was exposed to ultrasounds at frequencies of 37 kHz and 80 kHz in a continuous operation device with ultrapure deionized water. After 5 min of sonication, the count of C. coli decreased by 5.78% (37 kHz) and 6.27% (80 kHz), whereas the temperature increased by 3°C (37 kHz), and 6°C (80 kHz). After 30 min of sonication, the death rates of bacterial cells were 40.15% (37 kHz) and 55.10% (80 kHz), whereas the temperature reached the maximum values of 36°C (37 kHz), and 39°C (80 kHz). Sonication at the frequency of 80 kHz reduced the bacterial count from 6.86 log CFU/ml to 3.08 log CFU/ml, whereas the frequency of 37 kHz reduced the bacterial count from 6.75 log CFU/ml to 4.04 log CFU/ml. Despite significant differences (p < 0.05) in the number of C. coli cells, the cell death rate remained at the same level. Open in a separate window  相似文献   

14.
Vicia faba seedlings, subjected to a 10 microT 50 Hz square wave magnetic field for 40 min together with a radioactive pulse, showed a marked increase in amino acid uptake into intact roots. A more modest increase was observed with a 100 microT 50 Hz square wave. An increase in media conductivity at low field intensities from 10 microT 50 Hz square wave, 100 microT 50 Hz sine wave, and 100 microT 60 Hz square wave fields, indicated an alteration in the movement of ions across the plasma membrane, most likely due to an increase in net outflow of ions from the root cells. Similarly, marked elevation in media pH, indicating increased alkalinity, was observed at 10 and 100 microT for both square and sine waves at both 50 and 60 Hz. Our data would indicate that low magnetic field intensities of 10 and 100 microT at 50 or 60 Hz can alter membrane transport processes in root tips.  相似文献   

15.
This paper has two aims. First, it reports the findings of a study on the effects of low-frequency magnetic fields on reproduction. Second, it serves as an example of an attempt to replicate the results of an experimental study in an independent laboratory and discusses some of the problems of replication studies. To try to replicate the findings of a study reporting increased resorptions (fetal loss) in mice exposed to 20 kHz magnetic fields with sawtooth waveform and to study the possible effects of 50 Hz sinusoidal fields, pregnant mice were exposed to magnetic fields from day 0 to 18 of pregnancy, 24 h per day. The flux densities of the vertical magnetic fields were 15 μT (peak-to-peak) at 20 kHz and 13 or 130 μT (root mean square) at 50 Hz. Two strains of animals were used: CBA/S mice imported from the laboratory reporting the original observations, and a closely related strain CBA/Ca. The CBA/S mice were cleaned of pathogenic microbes and parasites before they were imported into our laboratory. The magnetic field exposures did not affect resorption rate in CBA/Ca mice. In CBA/S, the frequency of resorptions was higher in the exposed mice than in the control group. However, the increase was not significantly different from either the no-effect hypothesis or the results of the original study we were attempting to replicate. Differences between the two studies and difficulties in interpreting the results are discussed. It is concluded that the results tend more to support than argue against increased resorptions in CBA/S mice exposed to the 20 kHz magnetic field. The results demonstrate that animal strain is an important variable in bioelectromagnetics research: even closely related strains may show different responses to magnetic field exposure. Bioelectromagnetics 18:410–417, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
High frequency alternating current (HFAC) sinusoidal waveforms can block conduction in mammalian peripheral nerves. A mammalian axon model was used to simulate the response of nerves to HFAC conduction block. Sinusoidal waveforms from 1 to 40 kHz were delivered to eight simulated axon diameters ranging from 7.3 to 16 μm. Conduction block was obtained between 3 to 40 kHz. The minimum peak to peak current at which block was obtained, defined as the block threshold, increased with increasing frequency. Block threshold varied inversely with axon diameter. Upon initiation, the HFAC waveform produced one or more action potentials. These simulation results closely parallel previous experimental results of high frequency motor block of the rat sciatic and cat pudendal nerve. During HFAC block, the axons showed a dynamic steady state depolarization of multiple nodes, strongly suggesting a depolarization mechanism for HFAC conduction block. Action Editor: Karen Sigvardt  相似文献   

17.
Aims: The purpose of this study was to investigate the efficacy of continuous ohmic heating for reducing Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. Methods and Results: Orange juice and tomato juice were treated with electric field strengths in the range of 25–40 V cm?1 for different treatment times. The temperature of the samples increased with increasing treatment time and electric field strength. The rate of temperature change for tomato juice was higher than for orange juice at all voltage gradients applied. Higher electric field strength or longer treatment time resulted in a greater reduction of pathogens. Escherichia coli O157:H7 was reduced by more than 5 log after 60‐, 90‐ and 180‐s treatments in orange juice with 40, 35 and 30 V cm?1 electric field strength, respectively. In tomato juice, treatment with 25 V cm?1 for 30 s was sufficient to achieve a 5‐log reduction in E. coli O157:H7. Similar results were observed in Salm. Typhimurium and L. monocytogenes. The concentration of vitamin C in continuous ohmic heated juice was significantly higher than in conventionally heated juice (P < 0·05). Conclusions: Continuous ohmic heating can be effective in killing foodborne pathogens on orange juice and tomato juice with lower degradation of quality than conventional heating. Significance and Impact of the Study: These results suggest that continuous ohmic heating might be effectively used to pasteurize fruit and vegetable juices in a short operating time and that the effect of inactivation depends on applied electric field strengths, treatment time and electric conductivity.  相似文献   

18.
The aim of this study was to investigate changes in experimentally recorded M-waves with progressive motor unit (MU) activation induced by transcutaneous electrical stimulation with different pulse waveforms. In 10 subjects, surface electromyographic signals were detected with a linear electrode array during electrically elicited contractions of the biceps brachii muscle. Three different monophasic waveforms of 304-μs duration were applied to the stimulation electrode on the main muscle motor point: triangular, square, and sinusoidal. For each waveform, increasing stimulation current intensities were applied in 10 s (frequency: 20 Hz). It was found that: (a) the degree of MU activation, as indicated by M-wave average rectified value, was a function of the injected charge and not of the stimulation waveform, and (b) MUs tended to be recruited in order of increasing conduction velocity with increasing charge of transcutaneous stimulation. Moreover, the subjects reported lower discomfort during the contractions elicited by the triangular waveform with respect to the others. Since subject tolerance to the stimulation protocol must be considered as important as MU recruitment in determining the effectiveness of neuromuscular electrical stimulation (NMES), we suggest that both charge and waveform of the stimulation pulses should be considered relevant parameters for optimizing NMES protocols.  相似文献   

19.
Simultaneous tone-tone masking in conjunction with the envelope-following response (EFR) recording was used to obtain tuning curves in dolphins (Turslops truncatus). The EFR was evoked by amplitude-modulated probes of various frequencies. A modulation rate of 600 Hz was found to fit the requirement to have a narrow spectrum and evoke EFR of large amplitude. Tuning curves were obtained within the frequency range from 11.2 to 110 kHz. The Q10 values of the obtained tuning curves varied from 12–14 at the 11.2 kHz center frequency to 17–20 at the 64–90 kHz frequencies.Abbreviations ABR auditory brainstem response - EFR envelope following response - ERB equivalent rectangular bandwidth  相似文献   

20.
The inactivation of glutamine synthetase by tabtoxinine-β-lactam, a phytotoxin produced by Pseudomonas syringae pv. tabaci, was shown to be irreversible. The chloroplast and cytosolic forms of the enzyme from pea leaves (Pisum sativum L.) were separated, purified, and found to be kinetically similar with Km values for glutamate of 6.7 and 4.3 millimolar and for ATP of 2.0 and 1.3 millimolar, respectively. Both forms were irreversibly inactivated by the toxin at equal rates. Using the chloroplast form, it was found that inactivation by tabtoxinine-β-lactam required ATP. Glutamate and low levels of ammonia (<2 millimolar) slowed the rate of inactivation, whereas high levels of ammonia (5, 20, and 50 millimolar) accelerated it. The inactivation proceeded at a faster rate as the pH was increased from pH 6.5 to 7.5. The role which cellular compartmentalization could play in the inactivation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号