首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 900 毫秒
1.
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays an important role in insulin sensitivity, tissue homeostasis, and regulating cellular functions. We found high-level expression of PPARgamma in embryo mouse brain and neural stem cells (NSCs), in contrast to extremely low levels in adult mouse brain. Here, we show that PPARgamma mediates the proliferation and differentiation of murine NSCs via up-regulation of the epidermal growth factor receptor and activation of the ERK pathway. Cell growth rates of NSCs prepared from heterozygous PPARgamma-deficient mouse brains, PPARgamma-RNA-silenced NSCs, and PPARgamma dominant-negative NSCs were significantly decreased compared with those of wild-type NSCs. Physiological concentrations of PPARgamma agonists, rosiglitazone and pioglitazone, stimulated NSC growth, whereas antagonists caused cell death in a concentration-dependent manner via activation of the caspase cascade. The stimulation of cell growth by PPARgamma was associated with a rapid activation of the ERK pathway by phosphorylation and up-regulation of epidermal growth factor receptor and cyclin B protein levels. In contrast, activation of PPARgamma by agonists inhibited the differentiation of NSCs into neurons. The inhibition of differentiation was associated with an activation of STAT3. These data indicate that PPARgamma regulates the development of the central nervous system during early embryogenesis via control of NSC proliferation.  相似文献   

2.

Background

Anandamide (AEA) is an endogenous lipid mediator that exerts several effects in the brain as well as in peripheral tissues. These effects are mediated mainly by two types of cannabinoid receptors, named CB1R and CB2R, making AEA a prominent member of the “endocannabinoid” family. Also immune cells express CB1 and CB2 receptors, and possess the whole machinery responsible for endocannabinoid metabolism. Not surprisingly, evidence has been accumulated showing manifold roles of endocannabinoids in the modulation of the immune system. However, details of such a modulation have not yet been disclosed in primary human T-cells.

Methodology/Significance

In this investigation we used flow cytometry and ELISA tests, in order to show that AEA suppresses proliferation and release of cytokines like IL-2, TNF-α and INF-γ from activated human peripheral T-lymphocytes. However, AEA did not exert any cytotoxic effect on T-cells. The immunosuppression induced by AEA was mainly dependent on CB2R, since it could be mimicked by the CB2R selective agonist JWH-015, and could be blocked by the specific CB2R antagonist SR144528. Instead the selective CB1R agonist ACEA, or the selective CB1R antagonist SR141716, were ineffective. Furthermore, we demonstrated an unprecedented immunosuppressive effect of AEA on IL-17 production, a typical cytokine that is released from the unique CD4+ T-cell subset T-helper 17.

Conclusions/Significance

Overall, our study investigates for the first time the effects of the endocannabinoid AEA on primary human T-lymphocytes, demonstrating that it is a powerful modulator of immune cell functions. In particular, not only we clarify that CB2R mediates the immunosuppressive activity of AEA, but we are the first to describe such an immunosuppressive effect on the newly identified Th-17 cells. These findings might be of crucial importance for the rational design of new endocannabinoid-based immunotherapeutic approaches.  相似文献   

3.
Endocannabinoids are neuromodulators that act as retrograde synaptic messengers inhibiting the release of different neurotransmitters in cerebral areas such as hippocampus, cortex, and striatum. However, little is known about other roles of the endocannabinoid system in brain. In the present work we provide substantial evidence that the endocannabinoid anandamide (AEA) regulates neuronal differentiation both in culture and in vivo. Thus AEA, through the CB(1) receptor, inhibited cortical neuron progenitor differentiation to mature neuronal phenotype. In addition, human neural stem cell differentiation and nerve growth factor-induced PC12 cell differentiation were also inhibited by cannabinoid challenge. AEA decreased PC12 neuronal-like generation via CB(1)-mediated inhibition of sustained extracellular signal-regulated kinase (ERK) activation, which is responsible for nerve growth factor action. AEA thus inhibited TrkA-induced Rap1/B-Raf/ERK activation. Finally, immunohistochemical analyses by confocal microscopy revealed that adult neurogenesis in dentate gyrus was significantly decreased by the AEA analogue methanandamide and increased by the CB(1) antagonist SR141716. These data indicate that endocannabinoids inhibit neuronal progenitor cell differentiation through attenuation of the ERK pathway and suggest that they constitute a new physiological system involved in the regulation of neurogenesis.  相似文献   

4.
The rational of neural stem cells (NSCs) in the therapy of neurological disease is either to replace dead neurons or to improve host neuronal survival, the latter of which has got less attention and the underlying mechanism is as yet little known. Using a transwell co‐culture system, we reported that, in organotypic brain slice cultures, NSCs significantly improved host neuronal viability. Interestingly, this beneficial effect of NSCs was abrogated by a microglial inhibitor minocycline, while it was mimicked by a microglial agonist, Toll‐like receptor 9 (TLR9) ligand CpG‐ODN, which supports the pro‐vital mediation by microglia on this NSCs‐improved neuronal survival. Moreover, we showed that NSCs significantly induced host microglial movement and higher expression of a microglial marker IBA‐1, the latter of which was positively correlated with TLR9 or extracellular‐regulated protein kinases 1/2 (ERK1/2) activation. Real‐time PCR revealed that NSCs inhibited the expression of pro‐inflammatory molecules, but significantly increased the expression of molecules associated with a neuroprotective phenotype such as CX3CR1, triggering receptor expressed on myeloid cells‐2 (TREM2) and insulin growth factor 1 (IGF‐1). Similarly, in the microglia cells, NSCs induced the same microglial response as that in the slices. Further treatment with TLR9 ligand CpG‐ODN, TLR9 inhibitor chloroquine (CQ) or ERK1/2 inhibitor U0126 demonstrated that TLR9‐ERK1/2 pathway was involved in the NSCs‐induced microglial activation. Collectively, this study indicated that NSCs improve host neuronal survival by switching microglia from a detrimental to a neuroprotective phenotype in adult mouse brain, and the microglial TLR9‐ERK1/2 pathway seems to participate in this NSCs‐mediated rescue action.  相似文献   

5.
Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) on arrestin2-, Gαi/o-, Gβγ-, Gαs-, and Gαq-mediated intracellular signaling in the mouse STHdhQ7/Q7 cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gαi/o and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gαq-dependent pathways. CP55,940 and CBD both signaled through Gαs. CP55,940, but not CBD, activated downstream Gαs pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias.  相似文献   

6.
7.
Sulforaphane (SFN) is a natural organosulfur compound with anti‐oxidant and anti‐inflammation properties. The objective of this study is to investigate the effect of SFN on the proliferation and differentiation of neural stem cells (NSC). NSCs were exposed to SFN at the concentrations ranging from 0.25 to 10 µM. Cell viability was evaluated with MTT assay and lactate dehydogenase (LDH) release assay. The proliferation of NSCs was evaluated with neurosphere formation assay and Ki‐67 staining. The level of Tuj‐1 was evaluated with immunostaining and Western blot to assess NSC neuronal differentiation. The expression of key proteins in the Wnt signaling pathway, including β‐catenin and cyclin D1, in response to SFN treatment or the Wnt inhibitor, DKK‐1, was determined by Western blotting. No significant cytotoxicity was seen for SFN on NSCs with SFN at concentrations of less than 10 µM. On the contrary, SFN of low concentrations stimulated cell proliferation and prominently increased neurosphere formation and NSC differentiation to neurons. SFN treatment upregulated Wnt signaling in the NSCs, whereas DKK‐1 attenuated the effects of SFN. SFN is a drug to promote NSC proliferation and neuronal differentiation when used at low concentrations. These protective effects are mediated by Wnt signaling pathway.  相似文献   

8.
Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development.  相似文献   

9.
Spinal cannabinoid receptor 1 (CB1R) and purinergic P2X receptors (P2XR) play a critical role in the process of pathological pain. Both CB1R and P2XR are expressed in spinal dorsal horn (DH) neurons. It is not clear whether CB1 receptor activation modulates the function of P2X receptor channels within dorsal horn. For this reason, we observed the effect of CP55940 (cannabinoid receptor agonist) on ATP-induced Ca2+ mobilization in cultured rat DH neurons. The changes of intracellular calcium concentration ([Ca2+]i) were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator. 100 μM ATP caused [Ca2+]i increase in cultured DH neurons. ATP-evoked [Ca2+]i increase in DH neurons was blocked by chelating extracellular Ca2+ and P2 purinoceptor antagonist PPADS. At the same time, ATP-γ-S (a non-hydrolyzable ATP analogue) mimicked the ATP action, while P2Y receptor agonist ADP failed to evoke [Ca2+]i increase in cultured DH neurons. These data suggest that ATP-induced [Ca2+]i elevation in cultured DH neurons is mediated by P2X receptor. Subsequently, we noticed that, in cultured rat DH neurons, ATP-induced Ca2+ mobilization was inhibited after pretreated with CP55940 with a concentration-dependent manner, which implies that the opening of P2X receptor channels are down-regulated by activation of cannabinoid receptor. The inhibitory effect of CP55940 on ATP-induced Ca2+ response was mimicked by ACEA (CB1R agonist), but was not influenced by AM1241 (CB2R agonist). Moreover, the inhibitory effect of CP55940 on ATP-induced Ca2+ mobilization was blocked by AM251 (CB1 receptor antagonist), but was not influenced by AM630 (CB2 receptor antagonist). In addition, we also observed that forskolin (an activator of adenylate cyclase) and 8-Br-cAMP (a cell-permeable cAMP analog) reversed the inhibitory effect of CP55940, respectively. In a summary, our observations raise a possibility that CB1R rather than CB2R can downregulate the opening of P2X receptor channels in DH neurons. The reduction of cAMP/PKA signaling is a key element in the inhibitory effect of CB1R on P2X-channel-induced Ca2+ mobilization.  相似文献   

10.
Background and purpose Cerebral ischemia is known to elicit the activation of neural stem cells (NSCs); however its mechanism is not fully determined. Although oxygen concentration is known to mediate many ischemic actions, there has been little attention given to the role of pathological oxygen changes under cerebral ischemia on the activation of NSCs. We investigated the effects of various oxygen concentrations on mouse neural stem cells in vitro. Methods NSCs were cultured from the ganglionic eminence of fetal ICR mice on embryonic day 15.5 using a neurosphere method. The effects of oxygen concentrations on proliferation, differentiation, and cell death of NSCs were evaluated by bromodeoxyuridine (BrdU) incorporation, immunocytochemistry, and TUNEL assay, respectively. Results The highest proliferation and the neuronal differentiation of the NSCs were observed in 2% oxygen, which yielded significantly higher proportions of both BrdU-labeled cells and Tuj1-positive cells when compared with 20% and 4% oxygen. On the other hand, the differentiation to the astrocytes was not affected by oxygen concentrations, except in the case of anoxia (0% oxygen). The cell death of the NSCs increased in lower oxygen conditions and peaked at anoxia. Furthermore, the switching of the neuronal subtype differentiation from GABA-positive to glutamate-positive neurons was observed in lower oxygen conditions. Conclusions These findings raise the possibility that reduced oxygen levels occurring with cerebral ischemia enhance NSC proliferation and neural differentiation, and that mild hypoxia (2% oxygen), which is known to occur in the ischemic penumbra, is suitable for abundant neuronal differentiation.  相似文献   

11.
Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases.  相似文献   

12.
13.
Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Recent work suggests that the nigrostriatal dopaminergic area is a critical brain region for the neuronal dysfunction and death seen in HAND and that human dopaminergic neurons have a particular sensitivity to gp120-induced damage, manifested as reduced function (decreased dopamine uptake), morphological changes, and reduced viability. Synthetic cannabinoids inhibit HIV-1 expression in human microglia, suppress production of inflammatory mediators in human astrocytes, and there is substantial literature demonstrating the neuroprotective properties of cannabinoids in other neuropathogenic processes. Based on these data, experiments were designed to test the hypothesis that synthetic cannabinoids will protect dopaminergic neurons against the toxic effects of the HIV-1 protein gp120. Using a human mesencephalic neuronal/glial culture model, which contains dopaminergic neurons, microglia, and astrocytes, we were able to show that the CB1/CB2 agonist WIN55,212-2 blunts gp120-induced neuronal damage as measured by dopamine transporter function, apoptosis and lipid peroxidation; these actions were mediated principally by the CB2 receptor. Adding supplementary human microglia to our cultures enhances gp120-induced damage; WIN55,212-2 is able to alleviate this enhanced damage. Additionally, WIN55,212-2 inhibits gp120-induced superoxide production by purified human microglial cells, inhibits migration of human microglia towards supernatants generated from gp120-stimulated human mesencephalic neuronal/glial cultures and reduces chemokine and cytokine production from the human mesencephalic neuronal/glial cultures. These data suggest that synthetic cannabinoids are capable of protecting human dopaminergic neurons from gp120 in a variety of ways, acting principally through the CB2 receptors and microglia.  相似文献   

14.
15.
16.
We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure.  相似文献   

17.
18.
19.
Neural stem/progenitor cells (NSCs) have the capacity for self-renewal and differentiation into major classes of central nervous system cell types, such as neurons, astrocytes, and oligodendrocytes. The determination of fate of NSCs appears to be regulated by both intrinsic and extrinsic factors. Mounting evidence has shown that extracellular matrix molecules contribute to NSC proliferation and differentiation as extrinsic factors. Here we explore the effects of the epidermal growth factor-like (EGFL) and fibronectin type III homologous domains 6-8 (FN6-8) of the extracellular matrix molecule tenascin-R on NSC proliferation and differentiation. Our results show that domain FN6-8 inhibited NSC proliferation and promoted NSCs differentiation into astrocytes and less into oligodendrocytes or neurons. The EGFL domain did not affect NSC proliferation, but promoted NSC differentiation into neurons and reduced NSC differentiation into astrocytes and oligodendrocytes. Treatment of NSCs with beta 1 integrin function-blocking antibody resulted in attenuation of inhibition of the effect of FN6-8 on NSC proliferation. The influence of EGFL or FN6-8 on NSCs differentiation was inhibited by beta 1 integrin antibody application, implicating beta 1 integrin in proliferation and differentiation induced by EGFL and FN6-8 mediated triggering of NSCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号