首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Leishmania donovani and Leishmaniainfantum infections cause fatal visceral leishmaniasis, and Leishmaniamajor causes self healing cutaneous lesions. It is poorly understood what genetic differences between these Leishmania species are responsible for the different pathologies of infection. To investigate whether L.donovani species-specific genes are involved in visceral Leishmania infection, we have examined a L.donovani species-specific gene Ld1590 (ortholog of LinJ15_V3.0900) that is a pseudogene in L.major. We have previously shown that transgenic expression of L.donovani Ld1590 in L.major significantly increased the liver and spleen parasite burdens in infected BALB/c mice. In this study we report that Ld1590 potentially encodes a nucleotide sugar transporter (NST) which localizes in the L.donovani Golgi apparatus. Surprisingly, although transgenic expression of the Ld1590 NST increased L.major survival in visceral organs, deletion of Ld1590 NST in L.donovani had no significant effect on L.donovani survival in mice. These observations suggest that loss of the functional Ld1590 gene in L.major may have been associated with reduced virulence in visceral organs in its animal reservoir and could have contributed to L.major’s tropism for cutaneous infections.  相似文献   

2.
Leishmaniasis is a vector‐borne infectious disease with a wide range of pathologies depending on the species of Leishmania. Leishmania parasites are transmitted by the sand fly vector as promastigotes; within the mammalian host, Leishmania parasites differentiate into amastigotes and replicate in macrophages. The A2 protein from Leishmania donovani is expressed predominantly in amastigotes and therefore likely plays a role in survival in the mammalian host. In the present study, we have determined that the A2 protein colocalized with the Leishmania endoplasmic reticulum binding protein, BiP, was induced by stress and complexed with BiP following heat shock. The A2 gene in Leishmania major is a non‐expressed pseudogene, and we present evidence that ectopic expression of a transfected A2 gene in L. major enhanced its viability following heat shock. A2 may therefore play a role in protecting L. donovani from stress associated with infection in visceral organs, including the fever typically associated with visceral leishmaniasis. Interestingly, when comparing A2 protein localization, we also observed that the Leishmania secreted acid phosphatase SAcP protein was transported out of the parasite‐containing phagolysosome and was located throughout the macrophage cytoplasm in vesicles, providing the first example of a secreted Leishmania‐derived protein exiting the parasite‐containing phagolysosome.  相似文献   

3.
Leishmaniasis is a vector-borne neglected tropical disease associated with a spectrum of clinical manifestations, ranging from self-healing cutaneous lesions to fatal visceral infections. Among the most important questions in Leishmania research is why some species like L. donovani infect visceral organs, whereas other species like L. major remain in the skin. The determinants of visceral leishmaniasis are still poorly understood, although genomic, immunologic, and animal models are beginning to provide important insight into this disease. In this review, we discuss the vector, host, and pathogen factors that mediate the development of visceral leishmaniasis. We examine the progression of the parasite from the initial site of sand fly bite to the visceral organs and its ability to survive there. The identification of visceral disease determinants is required to understand disease evolution, to understand visceral organ survival mechanisms, and potentially to develop better interventions for this largely neglected disease.  相似文献   

4.

Background

Infection with Leishmania results in a broad spectrum of pathologies where L. infantum and L. donovani cause fatal visceral leishmaniasis and L. major causes destructive cutaneous lesions. The identification and characterization of Leishmania virulence genes may define the genetic basis for these different pathologies.

Methods and Findings

Comparison of the recently completed L. major and L. infantum genomes revealed a relatively small number of genes that are absent or present as pseudogenes in L. major and potentially encode proteins in L. infantum. To investigate the potential role of genetic differences between species in visceral infection, seven genes initially classified as absent in L. major but present in L. infantum were cloned from the closely related L. donovani genome and introduced into L. major. The transgenic L. major expressing the L. donovani genes were then introduced into BALB/c mice to select for parasites with increased virulence in the spleen to determine whether any of the L. donovani genes increased visceral infection levels. During the course of these experiments, one of the selected genes (LinJ32_V3.1040 (Li1040)) was reclassified as also present in the L. major genome. Interestingly, only the Li1040 gene significantly increased visceral infection in the L. major transfectants. The Li1040 gene encodes a protein containing a putative component of an endosomal protein sorting complex involved with protein transport.

Conclusions

These observations demonstrate that the levels of expression and sequence variations in genes ubiquitously shared between Leishmania species have the potential to significantly influence virulence and tissue tropism.  相似文献   

5.
Comparison of the Leishmania infantum genome with Leishmania braziliensis and Leishmania major genomes has identified 25 L. infantum species‐specific genes that are absent or pseudogenes in L. major and L. braziliensis. To determine whether these L. infantum species‐specific genes are involved in visceral Leishmania infection, we cloned the orthologues of 14 L. infantum species‐specific genes from the genetically closely related Leishmania donovani and introduced them into L. major. Two of these L. donovani species‐specific genes were found to significantly increase L. major survival in visceral organs in BALB/c mice. One (orthologue of LinJ28_V3.0340; Ld2834) of these two genes was further investigated. The L. donovani Ld2834 null mutants displayed dramatically reduced virulence in BALB/c mice and were unable to survive in axenic amastigote culture conditions arguing that Ld2834 plays a crucial role in enabling L. donovani survive at the increased temperature typically associated with visceral organs. Ld2834 encodes a 50 kDa protein that is localized in the cytoplasma and has no significant sequence similarity with other known genes. This study validates the importance of comparative genomics for understanding Leishmania species pathology and argues that Leishmania species‐specific genes play important roles in tissue tropism and virulence.  相似文献   

6.

Background

Glyoxalase I is a metalloenzyme of the glyoxalase pathway that plays a central role in eliminating the toxic metabolite methyglyoxal. The protozoan parasite Leishmania donovani possesses a unique trypanothione dependent glyoxalase system.

Principal Findings

Analysis of the L. donovani GLOI sequence predicted a mitochondrial targeting sequence, suggesting that the enzyme is likely to be targeted to the mitochondria. In order to determine definitively the intracellular localization of GLOI in L. donovani, a full-length GLOI gene was fused to green fluorescent protein (GFP) gene to generate a chimeric construct. Confocal microscopy of L. donovani promastigotes carrying this chimeric construct and immunofluorescence microscopy using anti-GLOI antibodies demonstrated that GLOI is localized in the kinetoplast of the parasite apart from the cytosol. To study the physiological role of GLOI in Leishmania, we first created promastigote mutants heterozygous for GLOI by targeted gene replacement using either hygromycin or neomycin phosphotransferases as selectable markers. Heterozygous mutants of L. donovani display a slower growth rate, have lower glyoxalase I activity and have reduced ability to detoxify methylglyoxal in comparison to the wild-type parasites. Complementation of the heterozygous mutant with an episomal GLOI construct showed the restoration of heterozygous mutant phenotype nearly fully to that of the wild-type. Null mutants were obtained only after GLOI was expressed from an episome in heterozygous mutants.

Conclusions

We for the first time report localization of GLOI in L. donovani in the kinetoplast. To study the physiological role of GLOI in Leishmania, we have generated GLOI attenuated strains by targeted gene replacement and report that GLOI is likely to be an important gene since GLOI mutants in L. donovani showed altered phenotype. The present data supports that the GLOI plays an essential role in the survival of this pathogenic organism and that inhibition of the enzyme potentiates the toxicity of methylglyoxal.  相似文献   

7.
The courses of visceral infection following intravenous injection of Leishmania donovani amastigotes, or lesion growth following subcutaneous injection of L. major promastigotes, were examined in B10.129(IOM) (H-2 b, H-11 b) mice and compared with disease profiles observed in congenic C57BL/10ScSn(=B10) (H-2 b, H-11 a) and B10.D2/n (H-2 d, H-11 a) mice, and in BALB/mice. Possession of alternative alleles at H-11 and closely linked loci transformed the normal curing/healing phenotype of B 10 mice into a characteristically different noncuring/nonhealing phenotype affecting both visceral and subcutaneous infections in B10.129(10M) mice. In reciprocal radiation bone marrow chimeras made between the congenic B10 and B10.129(10M) strains, both cure and noncure phenotypes were transferable with the donor hematopoietic system. Although it was possible to demonstrate transfer of suppression with T-enriched spleen cells from day 61 L. donovani-infected B10.129(10M) donor mice into 550 rad syngeneic recipients, the pretreatment of mice with sublethal irradiation did not, as in the earlier studies of Scl-controlled L. major nonhealing or H-2-controlled L. donovani noncure phenotypes, have a clear or consistent prophylactic effect. Together with the progressive disease profile observed even for L. donovani at low parasite doses this suggests that, despite their ability to develop initial delayed-type hypersensitivity reactions to parasite antigen early in L. major infection, B10.129(10M) mice possess some inherent defect in ability to mount a cell-mediated response effective at the level of macrophage antileishmanial activity in vivo even when suppressor T cells are not generated. Further elucidation of this characteristically different noncuring/nonhealing phenotype may provide important insight into common events involved in the development of the cell-mediated immune response to both visceral and subcutaneous forms of leishmaniasis.  相似文献   

8.
The single gene encoding cyclopropane fatty acid synthetase (CFAS) is present in Leishmania infantum, L. mexicana and L. braziliensis but absent from L. major, a causative agent of cutaneous leishmaniasis. In L. infantum, usually causative agent of visceral leishmaniasis, the CFAS gene is transcribed in both insect (extracellular) and host (intracellular) stages of the parasite life cycle. Tagged CFAS protein is stably detected in intracellular L. infantum but only during the early log phase of extracellular growth, when it shows partial localisation to the endoplasmic reticulum. Lipid analyses of L. infantum wild type, CFAS null and complemented parasites detect a low abundance CFAS-dependent C19Δ fatty acid, characteristic of a cyclopropanated species, in wild type and add-back cells. Sub-cellular fractionation studies locate the C19Δ fatty acid to both ER and plasma membrane-enriched fractions. This fatty acid is not detectable in wild type L. major, although expression of the L. infantum CFAS gene in L. major generates cyclopropanated fatty acids, indicating that the substrate for this modification is present in L. major, despite the absence of the modifying enzyme. Loss of the L. infantum CFAS gene does not affect extracellular parasite growth, phagocytosis or early survival in macrophages. However, while endocytosis is also unaffected in the extracellular CFAS nulls, membrane transporter activity is defective and the null parasites are more resistant to oxidative stress. Following infection in vivo, L. infantum CFAS nulls exhibit lower parasite burdens in both the liver and spleen of susceptible hosts but it has not been possible to complement this phenotype, suggesting that loss of C19Δ fatty acid may lead to irreversible changes in cell physiology that cannot be rescued by re-expression. Aberrant cyclopropanation in L. major decreases parasite virulence but does not influence parasite tissue tropism.  相似文献   

9.
We have isolated a gene, LdGF1, from the protozoan parasite Leishmania donovani. Overexpression of this gene confers a strong selective advantage in liquid culture after stationary phase growth arrest. We could show that recombinant L. donovani or Leishmania major, when overexpressing LdGF1, recover faster from a stationary phase growth arrest than control parasite strains. While no advantage of LdGF1 overexpression could be observed in log phase cultures or after a hydroxyurea-induced S-phase growth arrest, recovery from a cell cycle arrest due to serum deprivation was faster in LdGF1-overexpressing strains. This was found to be due to an accelerated release from a G1 cell cycle arrest. By contrast, in a BALB/c mouse infection system, overexpression of LdGF1 in L. major resulted in reduced virulence. We conclude that increased levels of LdGF1 are beneficiary during recovery from G1 cell cycle arrest, but pose a disadvantage inside a mammalian host. These results are discussed in the context of the observed loss of virulence during in vitro passage of Leishmania parasites.  相似文献   

10.

Background

Visceral leishmaniasis is the most clinically relevant and dangerous form of human leishmaniasis. Most traditional drugs for treatment of leishmaniasis are toxic, possess many adverse reactions and drug resistance is emerging. Therefore, there is urgent need for identification of new therapeutic targets. Recently, we found that mice with an inactivating knock-in mutation in the p110δ isoform of pi3k, (p110δd910a) are hyper resistant to L. major, develop minimal cutaneous lesion and rapidly clear their parasite. Here, we investigated whether pi3k signaling also regulates resistance to L. donovani, one of the causative agents of visceral leishmaniasis.

Methodology/Principal Findings

WT and p110δD910A mice (on a BALB/c background) were infected with L. donovani. At different time points, parasite burden and granuloma formation were assessed. T and B cell responses in the liver and spleen were determined. In addition, Tregs were expanded in vivo and its impact on resistance was assessed. We found that p110δD910A mice had significantly reduced splenomegaly and hepatomegaly and these organs harbored significantly fewer parasites than those of WT mice. Interestingly, infected p110δD910A mice liver contains fewer and less organized granulomas than their infected WT counterparts. Cells from p110δD910A mice were significantly impaired in their ability to produce cytokines compared to WT mice. The percentage and absolute numbers of Tregs in infected p110δD910A mice were lower than those in WT mice throughout the course of infection. In vivo expansion of Tregs in infected p110δD910A mice abolished their enhanced resistance to L. donovani infection.

Conclusions/Significance

Our results indicate that the enhanced resistance of p110δD910A mice to L. donovani infection is due to impaired activities of Tregs. They further show that resistance to Leishmania in the absence of p110δ signaling is independent of parasite species, suggesting that targeting the PI3K signaling pathway may be useful for treatment of both visceral and cutaneous leishmaniasis.  相似文献   

11.
Leishmania protozoan parasites (Trypanosomatidae family) are the causative agents of cutaneous, mucocutaneous and visceral leishmaniasis worldwide. While these diseases are associated with significant morbidity and mortality, there are few adequate treatments available. Sterol 14alpha-demethylase (CYP51) in the parasite sterol biosynthesis pathway has been the focus of considerable interest as a novel drug target in Leishmania. However, its essentiality in Leishmania donovani has yet to be determined. Here, we use a dual biological and pharmacological approach to demonstrate that CYP51 is indispensable in L. donovani. We show via a facilitated knockout approach that chromosomal CYP51 genes can only be knocked out in the presence of episomal complementation and that this episome cannot be lost from the parasite even under negative selection. In addition, we treated wild-type L. donovani and CYP51-deficient strains with 4-aminopyridyl-based inhibitors designed specifically for Trypanosoma cruzi CYP51. While potency was lower than in T. cruzi, these inhibitors had increased efficacy in parasites lacking a CYP51 allele compared to complemented parasites, indicating inhibition of parasite growth via a CYP51-specific mechanism and confirming essentiality of CYP51 in L. donovani. Overall, these results provide support for further development of CYP51 inhibitors for the treatment of visceral leishmaniasis.  相似文献   

12.

Background

Three major forms of human disease, cutaneous leishmaniasis, visceral leishmaniasis and mucocutaneous leishmaniasis, are caused by several leishmanial species whose geographic distribution frequently overlaps. These Leishmania species have diverse reservoir hosts, sand fly vectors and transmission patterns. In the Old World, the main parasite species responsible for leishmaniasis are Leishmania infantum, L. donovani, L. tropica, L. aethiopica and L. major. Accurate, rapid and sensitive diagnostic and identification procedures are crucial for the detection of infection and characterization of the causative leishmanial species, in order to provide accurate treatment, precise prognosis and appropriate public health control measures.

Methods/Principal Findings

High resolution melt analysis of a real time PCR product from the Internal Transcribed Spacer-1 rRNA region was used to identify and quantify Old World Leishmania in 300 samples from human patients, reservoir hosts and sand flies. Different characteristic high resolution melt analysis patterns were exhibited by L. major, L. tropica, L. aethiopica, and L. infantum. Genotyping by high resolution melt analysis was verified by DNA sequencing or restriction fragment length polymorphism. This new assay was able to detect as little as 2-4 ITS1 gene copies in a 5 µl DNA sample, i.e., less than a single parasite per reaction.

Conclusions/Significance

This new technique is useful for rapid diagnosis of leishmaniasis and simultaneous identification and quantification of the infecting Leishmania species. It can be used for diagnostic purposes directly from clinical samples, as well as epidemiological studies, reservoir host investigations and vector surveys.  相似文献   

13.
Paromomycin has recently been introduced for the treatment of visceral leishmaniasis and emergence of drug resistance can only be appropriately judged upon its long term routine use in the field. Understanding alterations in parasite behavior linked to paromomycin-resistance may be essential to assess the propensity for emergence and spread of resistant strains. A standardized and integrated laboratory approach was adopted to define and assess parasite fitness of both promastigotes and amastigotes using an experimentally induced paromomycin-resistant Leishmania donovani strain and its paromomycin-susceptible parent wild-type clinical isolate. Primary focus was placed on parasite growth and virulence, two major components of parasite fitness. The combination of in vitro and in vivo approaches enabled detailed comparison of wild-type and resistant strains for which no differences could be demonstrated with regard to promastigote growth, metacyclogenesis, in vitro infectivity, multiplication in primary peritoneal mouse macrophages and infectivity for Balb/c mice upon infection with 2 x 107 metacyclic promastigotes. Monitoring of in vitro intracellular amastigote multiplication revealed a consistent decrease in parasite burden over time for both wild-type and resistant parasites, an observation that was subsequently also confirmed in a larger set of L. donovani clinical isolates. Though the impact of these findings should be further explored, the study results suggest that the epidemiological implications of acquired paromomycin-resistance may remain minimal other than the loss of one of the last remaining drugs effective against visceral leishmaniasis.  相似文献   

14.
15.
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovaniNMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 Å resolution. The structure has as its defining feature a 14-stranded twisted β-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.  相似文献   

16.
Leishmaniasis is a widespread neglected tropical disease transmitted by infected sand flies resulting in either benign cutaneous infection or fatal visceral disease. Leishmania donovani is the principal species responsible for visceral leishmaniasis, yet an atypical L. donovani has become attenuated in several countries including Sri Lanka and causes cutaneous leishmaniasis. Previous studies have identified 91 genes altered in the atypical cutaneous L. donovani compared to typical visceral disease associated L. donovani including mutations in the RagC and Raptor genes that are part of the eukaryotic conserved TOR pathway and its upstream sensing pathway. In the present study, we investigate whether the RagC R231C mutation present in atypical cutaneous L. donovani introduced into the virulent L. donovani 1S2D chromosome by CRISPR gene editing could affect virulence for survival in visceral organs. Through bioinformatic analysis, we further investigated the presence of sensing pathway components upstream of TOR in L. donovani including RagC complexing proteins, RagA and Raptor. L. donovani 1S2D edited to express mutant RagC R231C were viable in promastigote but had reduced visceral parasitemia in infected BALB/c mice. The RagC R231C mutant retained the ability to interact with RagA and gene knockout experiments revealed that although the RagA gene was essential, the RagC gene was not essential under promastigote culture conditions but was essential for survival in the liver of experimentally infected mice. These results provide evidence that the TOR associated sensing pathway plays a prominent role in L. donovani visceral disease and the RagC R231C mutation contributed to the atypical pathology of cutaneous L. donovani in Sri Lanka.  相似文献   

17.
Leishmania parasites use polymorphonuclear neutrophils as intermediate hosts before their ultimate delivery to macrophages following engulfment of parasite-infected neutrophils. This leads to a silent and unrecognized entry of Leishmania into the macrophage host cell. Neutrophil function depends on its cytoplasmic granules, but their mobilization and role in how Leishmania parasites evade intracellular killing in neutrophils remain undetermined. Here, we have found by ultrastructural approaches that neutrophils ingested Leishmania major promastigotes, and azurophilic granules fused in a preferential way with parasite-containing phagosomes, without promoting parasite killing. Azurophilic granules, identified by the granule marker myeloperoxidase, also fused with Leishmania donovani-engulfed vacuoles in human neutrophils. In addition, the azurophilic membrane marker CD63 was also detected in the vacuole surrounding the parasite, and in the fusion of azurophilic granules with the parasite-engulfed phagosome. Tertiary and specific granules, involved in vacuole acidification and superoxide anion generation, hardly fused with Leishmania-containing phagosomes. L. major interaction with neutrophils did not elicit production of reactive oxygen species or mobilization of tertiary and specific granules. By using immunogold electron microscopy approaches in the engulfment of L. major and L. donovani by human neutrophils, we did not find a significant contribution of endoplasmic reticulum to the formation of Leishmania-containing vacuoles. Live Leishmania parasites were required to be optimally internalized by neutrophils. Our data suggest that Leishmania promastigotes modulate their uptake by neutrophils, and regulate granule fusion processes in a rather selective way to favor parasite survival in human neutrophils.  相似文献   

18.
19.
Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches.  相似文献   

20.

Background

American visceral leishmaniasis is caused by the protozoan Leishmania infantum. Dogs are the main reservoirs in the domestic transmission cycle. The limited accuracy of diagnostic tests for canine leishmaniasis may contribute to the lack of impact of control measures recommended by the Brazilian Ministry of Health. The objective of this study was to estimate the accuracy of two enzyme-linked immunosorbent assays employing L. major or L. infantum antigens and their reliability between three laboratories of different levels of complexity.

Methods

A validation study of ELISA techniques using L. major or L. infantum antigens was conducted. Direct visualization of the parasite in hematoxylin/eosin-stained histopathological sections, immunohistochemistry, and isolation of the parasite in culture.were used as gold standard. An animal that was positive in at least one of the tests was defined as infected with L. infantum. Serum samples collected from 1,425 dogs were analyzed. Samples were separated in three aliquots and tested in three different laboratories. Sensitivity, specificity and the area under de ROC curve were calculated and the reliability was evaluated between the participant laboratories.

Results

The sensitivity was 91.8% and 89.8% for the L. major and L. infantum assays, respectively. The specificity was 83.75% and 82.7% for the L. major and L. infantum assays, respectively. The area under de ROC curve was 0.920 and 0.898 for L. major and L. infantum, respectively. The mean intraclass correlation coefficients between laboratories ranged from 0.890 to 0.948 when L. major was used as antigen, and from 0.818 to 0.879 when L. infantum was used.

Interpretation

ELISA tests using L. major or L. infantum antigens have similar accuracy and reliability. Our results do not support the substitution of the L. major antigen of the ELISA test currently used for the diagnosis of canine visceral leishmaniasis in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号