首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
Insertions in the protease (PR) region of human immunodeficiency virus (HIV) represent an interesting mechanism of antiviral resistance against HIV PR inhibitors (PIs). Here, we demonstrate the improved ability of a phosphonate-containing experimental HIV PI, GS-8374, relative to that of other PIs, to effectively inhibit patient-derived recombinant HIV strains bearing PR insertions and numerous other mutations. We correlate enzyme inhibition with the catalytic activities of corresponding recombinant PRs in vitro and provide a biochemical and structural analysis of the PR-inhibitor complex.  相似文献   

2.
3.
Protease inhibitors (PIs) are an important class of drugs for the treatment of HIV infection. However, in the course of treatment, resistant viral variants with reduced sensitivity to PIs often emerge and become a major obstacle to successful control of viral load. On the basis of a compound equipotently inhibiting HIV-1 and 2 proteases (PR), we have designed a pseudopeptide inhibitor, QF34, that efficiently inhibits a wide variety of PR variants. In order to analyze the potency of the inhibitor, we constructed PR species harboring the typical (signature) mutations that confer resistance to commercially available PIs. Kinetic analyses showed that these mutated PRs were inhibited up to 1,000-fold less efficiently by the clinically approved PIs. In contrast, all PR species were effectively inhibited by QF34. In a clinical study, we have monitored 30 HIV-positive patients in the Czech Republic undergoing highly active antiretroviral therapy, and have identified highly PI resistant variants. Kinetic analyses revealed that QF34 retained its subnanomolar potency against multi-drug resistant PR variants. X-ray crystallographic analysis and molecular modeling experiments explained the wide specificity of QF34: this inhibitor binds to the PR in an unusual manner, thus avoiding contact sites that are mutated upon resistance development, and the unusual binding mode and consequently the binding energy is therefore preserved in the complex with a resistant variant. These results suggest a promising route for the design of second-generation PIs that are active against a variety of resistant PR variants.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate envelope, because these regions are crucial for drug binding but not for substrate recognition. We extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. We simulated the molecular dynamics of seven PR-substrate complexes to estimate the conformational flexibility of the bound substrates. Interdependence of substrate-protease interactions might compensate for variations in cleavage-site sequences and explain how a diverse set of sequences are recognized as substrates by the same enzyme. This diversity might be essential for regulating sequential processing of substrates. We define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance.  相似文献   

5.
Amino acid substitutions in human immunodeficiency virus type 1 (HIV-1) Gag cleavage sites have been identified in HIV-1 isolated from patients with AIDS failing chemotherapy containing protease inhibitors (PIs). However, a number of highly PI-resistant HIV-1 variants lack cleavage site amino acid substitutions. In this study we identified multiple novel amino acid substitutions including L75R, H219Q, V390D/V390A, R409K, and E468K in the Gag protein at non-cleavage sites in common among HIV-1 variants selected against the following four PIs: amprenavir, JE-2147, KNI-272, and UIC-94003. Analyses of replication profiles of various mutant clones including competitive HIV-1 replication assays demonstrated that these mutations were indispensable for HIV-1 replication in the presence of PIs. When some of these mutations were reverted to wild type amino acids, such HIV-1 clones failed to replicate. However, virtually the same Gag cleavage pattern was seen, indicating that the mutations affected Gag protein functions but not their cleavage sensitivity to protease. These data strongly suggest that non-cleavage site amino acid substitutions in the Gag protein recover the reduced replicative fitness of HIV-1 caused by mutations in the viral protease and may open a new avenue for designing PIs that resist the emergence of PI-resistant HIV-1.  相似文献   

6.
Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV.  相似文献   

7.
8.
We have studied the phenotypic impact of adaptative Gag cleavage site mutations in patient-derived human immunodeficiency virus type 1 (HIV-1) variants having developed resistance to the protease inhibitor ritonavir or saquinavir. We found that Gag mutations occurred in a minority of resistant viruses, regardless of the duration of the treatment and of the protease mutation profile. Gag mutations exerted only a partial corrective effect on resistance-associated loss of viral fitness. Reconstructed viruses with resistant proteases displayed multiple Gag cleavage defects, and in spite of Gag adaptation, several of these defects remained, explaining the limited corrective effect of cleavage site mutations on fitness. Our data provide clear evidence of the interplay between resistance and fitness in HIV-1 evolution in patients treated with protease inhibitors.  相似文献   

9.
We examined the viral replicative capacity and protease-mediated processing of Gag and Gag-Pol precursors of human immunodeficiency virus (HIV) variants selected for resistance to protease inhibitors. We compared recombinant viruses carrying plasma HIV RNA protease sequences obtained from five patients before protease inhibitor therapy and after virus escape from the treatment. Paired pretherapy-postresistance reconstructed viruses were evaluated for HIV infectivity in a quantitative single-cycle titration assay and in a lymphoid cell propagation assay. We found that all reconstructed resistant viruses had a reproducible decrease in their replicative capacity relative to their parental pretherapy counterparts. The extent of this loss of infectivity was pronounced for some viruses and more limited for others, irrespective of the inhibitor used and of the level of resistance. In resistant viruses, the efficiency of Gag and Gag-Pol precursor cleavage by the protease was impaired to different extents, as shown by the accumulation of several cleavage intermediates in purified particle preparations. We conclude that protease inhibitor-resistant HIV variants selected during therapy have an impaired replicative capacity related to multiple defects in the processing of Gag and Gag-Pol polyprotein precursors by the protease.  相似文献   

10.
The requirement for multiple mutations for protease inhibitor (PI) resistance necessitates a better understanding of the molecular basis of resistance development. The novel bioinformatics resistance determination approach presented here elaborates on genetic profiles observed in clinical human immunodeficiency virus type 1 (HIV-1) isolates. Synthetic protease sequences were cloned in a wild-type HIV-1 background to generate a large number of close variants, covering 69 mutation clusters between multi-PI-resistant viruses and their corresponding genetically closely related, but PI-susceptible, counterparts. The vast number of mutants generated facilitates a profound and broad analysis of the influence of the background on the effect of individual PI resistance-associated mutations (PI-RAMs) on PI susceptibility. Within a set of viruses, all PI-RAMs that differed between susceptible and resistant viruses were varied while maintaining the background sequence from the resistant virus. The PI darunavir was used to evaluate PI susceptibility. Single sets allowed delineation of the impact of individual mutations on PI susceptibility, as well as the influence of PI-RAMs on one another. Comparing across sets, it could be inferred how the background influenced the interaction between two mutations, in some cases even changing antagonistic relationships into synergistic ones or vice versa. The approach elaborates on patient data and demonstrates how the specific mutational background greatly influences the impact of individual mutations on PI susceptibility in clinical patterns.The clinical use of protease inhibitors (PIs) for the treatment of human immunodeficiency virus (HIV) infection has led to a remarkable decline in HIV-1-related morbidity and mortality, and PIs are now a cornerstone of highly active antiretroviral therapy (14). However, the clinical benefit of PIs is limited by several factors, including long-term safety and tolerability, resistance development, and drug-drug interactions.The combination of extremely high levels of virus production and a high mutation rate is resulting in a growing resistance to anti-HIV drugs, making these less effective over time (1). In addition, an increasing proportion of primary infections involve the transmission of resistant viruses, including strains with reduced susceptibility to approved PIs (17). Therefore, patients need to be monitored for development of drug resistance, and treatment regimens have to be adapted accordingly. Most currently approved PIs are based on similar chemical structures, and therefore extensive cross-resistance can occur (7).In order to investigate the molecular basis of resistance development, we used the PI darunavir (DRV) as a model. DRV, previously known as TMC114, was approved in 2006 for the treatment of highly experienced patients and in 2008 for treatment of naïve patients. DRV has a high in vitro and in vivo potency against wild-type (WT) HIV, and this activity is maintained against HIV variants that are highly cross-resistant to other licensed PIs (2, 15). Moreover, there appears to be a very high genetic barrier to the development of resistance to DRV (3). A diminished virological response to DRV was only observed at week 24 (POWER studies [4]), when at least three specific baseline protease mutations (of V11I, V32I, L33F, I47V, I50V, I54L/M, G73S, L76V, I84V, and L89V) occurred in a background containing multiple protease mutations (median of at least 10 International AIDS Society-USA [IAS-USA] PI resistance-associated mutations [PI-RAMs] [11]).Mutations can interact as part of higher-order networks in complex and frequently overlapping patterns (7, 16, 18). In such patterns, the effect of an individual protease mutation on drug susceptibility depends on the presence of other mutations, PI-RAMs as well as background mutations. Many of the background mutations act synergistically with PI-RAMs and increase resistance to specific drugs. In addition, some of these mutations favor the development of other drug resistance mutations, thus lowering the genetic barrier to the development of PI resistance. In contrast, some mutations in the mutational background antagonize the effects of an individual PI-RAM. As resistance mutations are usually associated with reduced viral fitness, it may be that certain background mutations could (partly) compensate for this (12).In order to design drugs with high genetic barriers to resistance, a full understanding of the molecular basis of resistance development is needed. This includes the complex interplay between resistance mutations that can be studied only by exploring genetically close variants. Because of the high variability of HIV, it is difficult to find the genetically related variants required for such a study in patient databases, even if they contain sequences from thousands of virus isolates. Traditional approaches utilizing site-directed mutagenesis to create close variants by modifying the protease amino acids in existing viruses are feasible only on a small scale. The advent of mature gene assembly technologies makes the large-scale generation of closely related variants practicable. Here we describe a novel approach, bioinformatics resistance determination (BIRD), in which we created PI resistance sets between viral genotypes observed in patient samples. By varying a specific set of mutations in an invariable genetic background, the complex interactions between these mutations could be carefully dissected. Our studies illustrate how some mutations do not influence other mutations, while other changes act synergistically or antagonistically toward a specific RAM. Moreover, by comparing sets, we show how a specific background can alter the interplay between mutations.  相似文献   

11.
While the role of drug resistance mutations in HIV protease has been studied comprehensively, mutations in its substrate, Gag, have not been extensively cataloged. Using deep sequencing, we analyzed a unique collection of longitudinal viral samples from 93 patients who have been treated with therapies containing protease inhibitors (PIs). Due to the high sequence coverage within each sample, the frequencies of mutations at individual positions were calculated with high precision. We used this information to characterize the variability in the Gag polyprotein and its effects on PI-therapy outcomes. To examine covariation of mutations between two different sites using deep sequencing data, we developed an approach to estimate the tight bounds on the two-site bivariate probabilities in each viral sample, and the mutual information between pairs of positions based on all the bounds. Utilizing the new methodology we found that mutations in the matrix and p6 proteins contribute to continued therapy failure and have a major role in the network of strongly correlated mutations in the Gag polyprotein, as well as between Gag and protease. Although covariation is not direct evidence of structural propensities, we found the strongest correlations between residues on capsid and matrix of the same Gag protein were often due to structural proximity. This suggests that some of the strongest inter-protein Gag correlations are the result of structural proximity. Moreover, the strong covariation between residues in matrix and capsid at the N-terminus with p1 and p6 at the C-terminus is consistent with residue-residue contacts between these proteins at some point in the viral life cycle.  相似文献   

12.
The HIV-1 proteinase (PR) has proved to be a good target for antiretroviral therapy of AIDS, and various PR inhibitors are now in clinical use. However, there is a rapid selection of viral variants bearing mutations in the proteinase that are resistant to clinical inhibitors. Drug resistance also involves mutations of the nucleocapsid/p1 and p1/p6 cleavage sites of Gag, both in vitro and in vivo. Cleavages at these sites have been shown to be rate limiting steps for polyprotein processing and viral maturation. Furthermore, these sites show significant sequence polymorphism, which also may have an impact on virion infectivity. We have studied the hydrolysis of oligopeptides representing these cleavage sites with representative mutations found as natural variations or that arise as resistant mutations. Wild-type and five drug resistant PRs with mutations within or outside the substrate binding site were tested. While the natural variations showed either increased or decreased susceptibility of peptides toward the proteinases, the resistant mutations always had a beneficial effect on catalytic efficiency. Comparison of the specificity changes obtained for the various substrates suggested that the maximization of the van der Waals contacts between substrate and PR is the major determinant of specificity: the same effect is crucial for inhibitor potency. The natural nucleocapsid/p1 and p1/p6 sites do not appear to be optimized for rapid hydrolysis. Hence, mutation of these rate limiting cleavage sites can partly compensate for the reduced catalytic activity of drug resistant mutant HIV-1 proteinases.  相似文献   

13.
The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.  相似文献   

14.
Most protease-substrate assays rely on short, synthetic peptide substrates consisting of native or modified cleavage sequences. These assays are inadequate for interrogating the contribution of native substrate structure distal to a cleavage site that influences enzymatic cleavage or for inhibitor screening of native substrates. Recent evidence from HIV-1 isolates obtained from individuals resistant to protease inhibitors has demonstrated that mutations distal to or surrounding the protease cleavage sites in the Gag substrate contribute to inhibitor resistance. We have developed a protease-substrate cleavage assay, termed the cleavage enzyme- cytometric bead array (CE-CBA), which relies on native domains of the Gag substrate containing embedded cleavage sites. The Gag substrate is expressed as a fluorescent reporter fusion protein, and substrate cleavage can be followed through the loss of fluorescence utilizing flow cytometry. The CE-CBA allows precise determination of alterations in protease catalytic efficiency (k(cat)/K(M)) imparted by protease inhibitor resistance mutations in protease and/or gag in cleavage or noncleavage site locations in the Gag substrate. We show that the CE-CBA platform can identify HIV-1 protease present in cellular extractions and facilitates the identification of small molecule inhibitors of protease or its substrate Gag. Moreover, the CE-CBA can be readily adapted to any enzyme-substrate pair and can be utilized to rapidly provide assessment of catalytic efficiency as well as systematically screen for inhibitors of enzymatic processing of substrate.  相似文献   

15.
Abstract

HIV protease inhibitors (PIs) approved by the FDA (US Food and Drug Administration) are a major class of antiretroviral. HIV-2 protease (PR2) is naturally resistant to most of them as PIs were designed for HIV-1 protease (PR1). In this study, we explored the impact of amino-acid substitutions between PR1 and PR2 on the structure of protease (PR) by comparing the structural variability of 13 regions using 24 PR1 and PR2 structures complexed with diverse ligands. Our analyses confirmed structural rigidity of the catalytic region and highlighted the important role of three regions in the conservation of the catalytic region conformation. Surprisingly, we showed that the flap region, corresponding to a flexible region, exhibits similar conformations in PR1 and PR2. Furthermore, we identified regions exhibiting different conformations in PR1 and PR2, which could be explained by the intrinsic flexibility of these regions, by crystal packing, or by PR1 and PR2 substitutions. Some substitutions induce structural changes in the R2 and R4 regions that could have an impact on the properties of PI-binding site and could thus modify PI binding mode. Substitutions involved in structural changes in the elbow region could alter the flexibility of the PR2 flap regions relative to PR1, and thus play a role in the transition from the semi-open form to the closed form, and have an impact on ligand binding. These results improve the understanding of the impact of sequence variations between PR1 and PR2 on the natural resistance of HIV-2 to commercially available PIs.

Communicated by Ramaswamy H. Sarma  相似文献   

16.
BackgroundMajor protease mutations are rarely observed following failure with protease inhibitors (PI), and other viral determinants of failure to PI are poorly understood. We therefore characterized Gag-Protease phenotypic susceptibility in subtype A and D viruses circulating in East Africa following viral rebound on PIs.MethodsSamples from baseline and treatment failure in patients enrolled in the second line LPV/r trial SARA underwent phenotypic susceptibility testing. Data were expressed as fold-change in susceptibility relative to a LPV-susceptible reference strain.ResultsWe cloned 48 Gag-Protease containing sequences from seven individuals and performed drug resistance phenotyping from pre-PI and treatment failure timepoints in seven patients. For the six patients where major protease inhibitor resistance mutations did not emerge, mean fold-change EC50 to LPV was 4.07 fold (95% CI, 2.08–6.07) at the pre-PI timepoint. Following viral failure the mean fold-change in EC50 to LPV was 4.25 fold (95% CI, 1.39–7.11, p = 0.91). All viruses remained susceptible to DRV. In our assay system, the major PI resistance mutation I84V, which emerged in one individual, conferred a 10.5-fold reduction in LPV susceptibility. One of the six patients exhibited a significant reduction in susceptibility between pre-PI and failure timepoints (from 4.7 fold to 9.6 fold) in the absence of known major mutations in protease, but associated with changes in Gag: V7I, G49D, R69Q, A120D, Q127K, N375S and I462S. Phylogenetic analysis provided evidence of the emergence of genetically distinct viruses at the time of treatment failure, indicating ongoing viral evolution in Gag-protease under PI pressure.ConclusionsHere we observe in one patient the development of significantly reduced susceptibility conferred by changes in Gag which may have contributed to treatment failure on a protease inhibitor containing regimen. Further phenotype-genotype studies are required to elucidate genetic determinants of protease inhibitor failure in those who fail without traditional resistance mutations whilst PI use is being scaled up globally.  相似文献   

17.
The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR). The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP) gene only in the presence of an effective PR Inhibitor (PI). Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells.  相似文献   

18.
The HIV protease plays a major role in the life cycle of the virus and has long been a target in antiviral therapy. Resistance of HIV protease to protease inhibitors (PIs) is problematic for the effective treatment of HIV infection. The South African HIV-1 subtype C protease (C-SA PR), which contains eight polymorphisms relative to the consensus HIV-1 subtype B protease, was expressed in Escherichia coli, purified, and crystallized. The crystal structure of the C-SA PR was resolved at 2.7?Å, which is the first crystal structure of a HIV-1 subtype C protease that predominates in Africa. Structural analyses of the C-SA PR in comparison to HIV-1 subtype B proteases indicated that polymorphisms at position 36 of the homodimeric HIV-1 protease may impact on the stability of the hinge region of the protease, and hence the dynamics of the flap region. Molecular dynamics simulations showed that the flap region of the C-SA PR displays a wider range of movements over time as compared to the subtype B proteases. Reduced stability in the hinge region resulting from the absent E35-R57 salt bridge in the C-SA PR, most likely contributes to the increased flexibility of the flaps which may be associated with reduced susceptibility to PIs.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:36  相似文献   

19.
A variety of amino acid substitutions in the protease and Gag proteins have been reported to contribute to the development of human immunodeficiency virus type 1 (HIV-1) resistance to protease inhibitors. In the present study, full-length molecular infectious HIV-1 clones were generated by using HIV-1 variants isolated from heavily drug-experienced and therapy-failed AIDS patients. Of six full-length infectious clones generated, four were found to have unique insertions (TGNS, SQVN, AQQA, SRPE, APP, and/or PTAPPA) near the p17/p24 and p1/p6 Gag cleavage sites, in addition to the known resistance-related multiple amino acid substitutions within the protease. The addition of such Gag inserts mostly compromised the replication of wild-type HIV-1, whereas the primary multidrug-resistant HIV infectious clones containing inserts replicated significantly better than those modified to lack the inserts. Western blot analyses revealed that the processing of Gag proteins by wild-type protease was impaired by the presence of the inserts, whereas that by mutant protease was substantially improved. The present study represents the first report clearly demonstrating that the inserts seen in the proximity of the Gag cleavage sites in highly multi-PI resistant HIV-1 variants restore the otherwise compromised enzymatic activity of mutant protease, enabling the multi-PI-resistant HIV-1 variants to remain replication competent.  相似文献   

20.
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4?A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号